【数Ⅰ】【数と式】式の展開2 ※問題文は概要欄 - 質問解決D.B.(データベース)

【数Ⅰ】【数と式】式の展開2 ※問題文は概要欄

問題文全文(内容文):
展開せよ
${(a+1)}^3$    ${(x+3y)}^3$
${(2a-1)}^3$    ${(-3a+2b)}^3$

展開せよ
$(a+5)(a^2-5a+25)$     $(3-a)(9+3a+a^2)$
$(2x+y)(4x^2-2xy+y^2)$  $(3a-2b)(9a^2+6ab+4b^2)$

計算せよ
$(x-1)(x-3)(x+1)(x+3)$      $(x+2)(x+5)(x-4)(x-1)$
$(a-b)(a+b)(a+b)(a+b) $     ${(2x-y)}^3{(2x+y)}^3$
${(a+b)}^2{(a-b)}^2{(a+ab+b)}^2{(a-ab+b)}^2$
$(x+2)(x-2)(x^2+2x+4)(x^2-2x+4)$
${(a+b+c)}^2+{(a+b-c)}^2+{(b+c-a)}^2+{(c+a-b)}^2$
チャプター:

0:02 展開【解説開始】 
1:22 (a+1)³ ,(x+3y)³  
3:16 (2a-1)³  
5:06  (-3a+2b)³  
8:28 (3-a)(9+3a+a²)  
8:53  (2x+y)(4x²-2xy+y²) ,(3a-2b)(9a²+6ab+4b²)
10:23 (x-1)(x-3)(x+1)(x+3)
14:36  (x+2)(x+5)(x-4)(x-1)
18:54 (a-b)(a+b)(a+b)(a+b)
21:16  (2x-y)³(2x+y)³
27:17 (a+b)²(a-b)²(a+ab+b)²(a-ab+b)²
30:30 (x+2)(x-2)(x²+2x+4)(x²-2x+4)
32:42 (a+b+c)²+(a+b-c)²+(b+c-a)²+(c+a-b)²

単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#数と式#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
展開せよ
${(a+1)}^3$    ${(x+3y)}^3$
${(2a-1)}^3$    ${(-3a+2b)}^3$

展開せよ
$(a+5)(a^2-5a+25)$     $(3-a)(9+3a+a^2)$
$(2x+y)(4x^2-2xy+y^2)$  $(3a-2b)(9a^2+6ab+4b^2)$

計算せよ
$(x-1)(x-3)(x+1)(x+3)$      $(x+2)(x+5)(x-4)(x-1)$
$(a-b)(a+b)(a+b)(a+b) $     ${(2x-y)}^3{(2x+y)}^3$
${(a+b)}^2{(a-b)}^2{(a+ab+b)}^2{(a-ab+b)}^2$
$(x+2)(x-2)(x^2+2x+4)(x^2-2x+4)$
${(a+b+c)}^2+{(a+b-c)}^2+{(b+c-a)}^2+{(c+a-b)}^2$
投稿日:2024.11.06

<関連動画>

【高校数学】  数Ⅰ-52  特殊な最大・最小①

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎$x \geqq 0 , y \leqq 0,x-2y=3$のとき、$x^2+y^2$の最大値、最小値を求めよう。
この動画を見る 

二等辺三角形と外接円 京都女子

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
円の半径=4
△ABC=?
京都女子高等学校
この動画を見る 

【わかりやすく解説】中学の「展開」をおさらい!

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
次の式を展開せよ
(1)$(x+3)(2x-1)$
(2)$(x+3y)(x-3y)$
(3)$(x-5y)^2$
この動画を見る 

連立二元二次方程式

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
解け
\begin{eqnarray}
\left\{
\begin{array}{l}
xy + x + y = 1 \\
x^2y^2 + x^2 + y^2 = 31
\end{array}
\right.
\end{eqnarray}
この動画を見る 

福田のわかった数学〜高校1年生034〜背理法(2)

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#集合と命題(集合・命題と条件・背理法)#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{I} 背理法(2)\\
\sqrt2,\sqrt[3]3が無理数であることを既知として次を証明せよ。\\
p,q,\sqrt2p+\sqrt[3]3qが全て有理数 \Rightarrow p=q=0
\end{eqnarray}
この動画を見る 
PAGE TOP