福田の数学〜東京工業大学2022年理系第4問〜複素数平面上の点の軌跡と線分の通過範囲 - 質問解決D.B.(データベース)

福田の数学〜東京工業大学2022年理系第4問〜複素数平面上の点の軌跡と線分の通過範囲

問題文全文(内容文):
aを正の実数とする。複素数$z$が$|z-1|=a$かつ$z\neq \frac{1}{2}$を満たしながら
動くとき、複素数平面上の点$w=\frac{z-3}{1-2z}$が描く図形をKとする。
このとき、次の問いに答えよ。
(1)Kが円となるためのaの条件を求めよ。また、そのとき
Kの中心が表す複素数とKの半径を、それぞれaを用いて表せ。
(2)aが(1)の条件を満たしながら動くとき、虚軸に平行で円Kの直径となる
線分が通過する領域を複素数平面上に図示せよ。

2022東京工業大学理系過去問
単元: #大学入試過去問(数学)#複素数平面#複素数平面#学校別大学入試過去問解説(数学)#東京工業大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
aを正の実数とする。複素数$z$が$|z-1|=a$かつ$z\neq \frac{1}{2}$を満たしながら
動くとき、複素数平面上の点$w=\frac{z-3}{1-2z}$が描く図形をKとする。
このとき、次の問いに答えよ。
(1)Kが円となるためのaの条件を求めよ。また、そのとき
Kの中心が表す複素数とKの半径を、それぞれaを用いて表せ。
(2)aが(1)の条件を満たしながら動くとき、虚軸に平行で円Kの直径となる
線分が通過する領域を複素数平面上に図示せよ。

2022東京工業大学理系過去問
投稿日:2022.04.02

<関連動画>

2023久留米大(医)複素数の計算

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#複素数平面#学校別大学入試過去問解説(数学)#数学(高校生)#数C
指導講師: 鈴木貫太郎
問題文全文(内容文):
複素数Zは$\vert Z \vert =1$で$Z^2-2Z+\dfrac{1}{Z}$が純虚数であるZの値を求めよ。

久留米大(医)過去問
この動画を見る 

【数ⅢC】複素数平面の基本③複素数平面の極形式の裏ワザ

アイキャッチ画像
単元: #複素数平面#複素数平面#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の複素数を極形式で表せ
(1)$\sqrt3+i$ (2)$-2+2i$
この動画を見る 

【数学III】複素数平面のイメージ・ニュアンスが30分で丸わかり動画

アイキャッチ画像
単元: #複素数平面#複素数平面#数学(高校生)#数C
指導講師: カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
【数学III】複素数平面のイメージ・ニュアンス解説動画です
この動画を見る 

福田の数学〜東京工業大学2023年理系第3問〜複素数の絶対値と偏角に関する確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#複素数平面#確率#漸化式#複素数平面#学校別大学入試過去問解説(数学)#東京工業大学#数学(高校生)#数B#数C
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ 実数が書かれた3枚のカード$\boxed{0}$,$\boxed{1}$,$\boxed{\sqrt 3}$から無作為に2枚のカードを順に選び、出た実数を順に実部と虚部にもつ複素数を得る操作を考える。正の整数nに対して、この操作をn回繰り返して得られるn個の複素数の積を$z_n$で表す。
(1)|$z_n$|<5となる確率$P_n$を求めよ。
(2)$z_n^2$が実数となる確率$Q_n$を求めよ。

2023東京工業大学理系過去問
この動画を見る 

福田の入試問題解説〜北海道大学2022年理系第5問〜複素数平面上の点の軌跡とドモアブルの定理

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数平面#図形と方程式#軌跡と領域#複素数平面#図形への応用#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学#数C
指導講師: 福田次郎
問題文全文(内容文):
複素数zに関する次の2つの方程式を考える。ただし、$\bar{ z }$はzと共役な複素数とし、
iを虚数単位とする。
$z\bar{ z }=4 \ldots\ldots$①     $|z|=|z-\sqrt3+i| \ldots\ldots②$

(1)①、②それぞれの方程式について、その解z全体が表す図形を複素数平面上に
図示せよ。
(2)①、②の共通解となる複素数を全て求めよ。
(3)(2)で求めた全ての複素数の積をwとおく。このとき$w^n$が負の実数となる
ための整数nの必要十分条件を求めよ。

2022北海道大学理系過去問
この動画を見る 
PAGE TOP