福田の数学〜早稲田大学2023年理工学部第5問〜回転体の体積 - 質問解決D.B.(データベース)

福田の数学〜早稲田大学2023年理工学部第5問〜回転体の体積

問題文全文(内容文):
$\Large\boxed{5}$ xyz空間において、3点A(2,1,2), B(0,3,0), C(0,-3,0)を頂点とする三角形ABCを考える。以下の問いに答えよ。
(1)$\angle$BACを求めよ。
(2)0≦h≦2に対し、線分AB,ACと平面x=hとの交点をそれぞれP,Qとする。
点P,Qの座標を求めよ。
(3)0≦h≦2に対し、点(h,0,0)と線分PQの距離をhで表せ。ただし、点と線分の距離とは、点と線分上の点の距離の最小値である。
(4)三角形ABCをx軸の周りに1回転させ、そのときに三角形が通過する点全体からなる立体の体積を求めよ。

2023早稲田大学理工学部過去問
単元: #大学入試過去問(数学)#積分とその応用#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{5}$ xyz空間において、3点A(2,1,2), B(0,3,0), C(0,-3,0)を頂点とする三角形ABCを考える。以下の問いに答えよ。
(1)$\angle$BACを求めよ。
(2)0≦h≦2に対し、線分AB,ACと平面x=hとの交点をそれぞれP,Qとする。
点P,Qの座標を求めよ。
(3)0≦h≦2に対し、点(h,0,0)と線分PQの距離をhで表せ。ただし、点と線分の距離とは、点と線分上の点の距離の最小値である。
(4)三角形ABCをx軸の周りに1回転させ、そのときに三角形が通過する点全体からなる立体の体積を求めよ。

2023早稲田大学理工学部過去問
投稿日:2023.04.28

<関連動画>

大学入試問題#70 鳥取大学医学部(2012) 微積の応用

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#鳥取大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$a,b$:実数
$0 \lt a \lt 2$
$\displaystyle \int_{a}^{x}f(x-t)f(t)dt=\cos(ax)-b$

(1)$a,b$の値を求めよ。
(2)$f(x)$を求めよ
(3)$f(x)$が最大値をとるときの$x$の値を求めよ。

出典:2012年鳥取大学医学部 入試問題
この動画を見る 

重積分⑦-1【極座標による変数変換】(高専数学 微積II,数検1級1次解析対応)

アイキャッチ画像
単元: #大学入試過去問(数学)#数学検定・数学甲子園・数学オリンピック等#積分とその応用#定積分#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#数学検定#数学検定1級#数学(高校生)#数Ⅲ#高専(高等専門学校)
指導講師: ますただ
問題文全文(内容文):
変数変換(極座標)
$x=rcosθ$ $y=rsinθ$
$∬_D f(x,y)dxdy=∬_D f(rcosθ,rsinθ)rdrdθ$

(1)$∬_D \sqrt{x^2+y^2}dxdy$
$D : 4 \leqq x^2+y^2 \leqq 9$

(2)$∬_D sin\sqrt{x^2+y^2}dxdy$
$D : x^2+y^2 \leqq x^2$
この動画を見る 

#52 数検1級1次試験 過去問 #微分方程式

アイキャッチ画像
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$x\displaystyle \frac{dy}{dx}+y=(log\ x)^2$
$y(1)=1$をみたす解を$y=y(x)$で表せ
この動画を見る 

数学「大学入試良問集」【19−23 空間図形の断面積と体積】を宇宙一わかりやすく

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#東京学芸大学
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
図のような1辺の長さ$a$の立方体
$ABCD-EFGH$がある。
線分$AF,BG,CH,DE$上にそれぞれ動点$P,Q,R,S$があり、頂点$A,B,C,D$を同時に出発して同じ速さで頂点$F,G,H,E$まで動く。
このとき、四角形$PQRS$が通過してできる立体の体積を求めよ。
この動画を見る 

福田の数学〜立教大学2025理学部第1問(3)〜定積分の計算

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#不定積分#定積分#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{1}$

(3)定積分$\displaystyle \int_{0}^{\frac{7}{6}\pi}\sin x \sin 2x \ dx$の値は

$\boxed{エ}$である。

$2025$年立教大学理学部過去問題
この動画を見る 
PAGE TOP