福田の数学〜早稲田大学2023年理工学部第5問〜回転体の体積 - 質問解決D.B.(データベース)

福田の数学〜早稲田大学2023年理工学部第5問〜回転体の体積

問題文全文(内容文):
$\Large\boxed{5}$ xyz空間において、3点A(2,1,2), B(0,3,0), C(0,-3,0)を頂点とする三角形ABCを考える。以下の問いに答えよ。
(1)$\angle$BACを求めよ。
(2)0≦h≦2に対し、線分AB,ACと平面x=hとの交点をそれぞれP,Qとする。
点P,Qの座標を求めよ。
(3)0≦h≦2に対し、点(h,0,0)と線分PQの距離をhで表せ。ただし、点と線分の距離とは、点と線分上の点の距離の最小値である。
(4)三角形ABCをx軸の周りに1回転させ、そのときに三角形が通過する点全体からなる立体の体積を求めよ。

2023早稲田大学理工学部過去問
単元: #大学入試過去問(数学)#積分とその応用#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{5}$ xyz空間において、3点A(2,1,2), B(0,3,0), C(0,-3,0)を頂点とする三角形ABCを考える。以下の問いに答えよ。
(1)$\angle$BACを求めよ。
(2)0≦h≦2に対し、線分AB,ACと平面x=hとの交点をそれぞれP,Qとする。
点P,Qの座標を求めよ。
(3)0≦h≦2に対し、点(h,0,0)と線分PQの距離をhで表せ。ただし、点と線分の距離とは、点と線分上の点の距離の最小値である。
(4)三角形ABCをx軸の周りに1回転させ、そのときに三角形が通過する点全体からなる立体の体積を求めよ。

2023早稲田大学理工学部過去問
投稿日:2023.04.28

<関連動画>

数学「大学入試良問集」【19−19 定積分で示された関数の最大最小】を宇宙一わかりやすく

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#中京大学
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
関数$f(x)=\displaystyle \int_{0}^{x}(x\ \cos\ t-\sin\ t)dt(0 \leqq x \leqq 2\pi)$について次の問いに答えよ。
(1)$f(x)$を微分せよ。
(2)$f(x)$の最大値と最小値、およびそのときの$x$の値を求めよ。
この動画を見る 

【高校数学】新潟大学2023年の積分の問題をその場で解説しながら解いてみた!毎日積分90日目~47都道府県制覇への道~【㉝新潟】【毎日17時投稿】

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#新潟大学#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
【新潟大学 2023】
$a,b$を正の数とし、座標平面上の曲線
$C_1:y=e^{ax}, C_2:y=\sqrt{2x-b}$
を考える。次の問いに答えよ。
(1)関数$y=e^{ax}$,と関数$y=\sqrt{2x-b}$の導関数を求めよ。
(2)曲線$C_1$と曲線$C_2$が1点$P$を共有し、その点において共通の接線をもつとする。この時,$b$と点$P$の座標を$a$を用いて表せ。
(3) (2)において、曲線$C_1$,曲線$C_2$,$x$軸,$y$軸で囲まれる図形の面積を$a$を用いて表せ。
この動画を見る 

【数Ⅲ-174】曲線の長さ①(基本編)

アイキャッチ画像
単元: #微分とその応用#積分とその応用#微分法#面積・体積・長さ・速度#数学(高校生)#数Ⅲ
指導講師: とある男が授業をしてみた
問題文全文(内容文):
数Ⅲ(曲線の長さ①・基本編)

ポイント
曲線$y=f(x) a \leqq x \leqq b$の長さ$L$は $L=$ ①

②$y=x \sqrt{x}(0 \leqq x \leqq \frac{4}{3})$の長さを求めよ。

③$y=\frac{1}{2}x^2-\frac{1}{4}\log x(1 \leqq x \leqq e)$の長さを求めよ。
この動画を見る 

数学「大学入試良問集」【19−6 楕円と回転体の体積】を宇宙一わかりやすく

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#数学(高校生)#広島大学#数Ⅲ
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
$0 \lt a \lt 1$とする。
点$(1,0)$から楕円$\displaystyle \frac{x^2}{a^2}+y^2=1$に引いた接線の接点の$x$座標を$b$とする。

(1)
$b$を$a$で表せ。

(2)
楕円$\displaystyle \frac{x^2}{a^2}+y^2=1$の$b \leqq x \leqq a$の部分と直線$x=b$で囲まれた図形を、$x$軸のまわり1回転してできる回転体の体積$V$を求めよ。

(3)
$V$の値が最大となる$a$の値と、そのときの$V$の最大値を求めよ。
この動画を見る 

福田の一夜漬け数学〜積分・面積と体積〜切ってから回転その1(受験編)

アイキャッチ画像
単元: #積分とその応用#面積・体積・長さ・速度#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ 空間内の2点A(1,0,0),B(0,1,1)を結ぶ線分ABをz軸のまわりに
1回転してできる曲面と2平面z=0,z=1とで囲まれた立体の体積
を求めよ。
この動画を見る 
PAGE TOP