#19数検準1級 極限値(はさみうちの原理) - 質問解決D.B.(データベース)

#19数検準1級 極限値(はさみうちの原理)

問題文全文(内容文):
$\displaystyle \lim_{n\to\infty} \displaystyle \int_{0}^{1} \dfrac{x^n}{1+x^2} dx$
を求めよ.
単元: #数Ⅱ#数学検定・数学甲子園・数学オリンピック等#微分法と積分法#平均変化率・極限・導関数#数学検定#数学検定準1級#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \lim_{n\to\infty} \displaystyle \int_{0}^{1} \dfrac{x^n}{1+x^2} dx$
を求めよ.
投稿日:2021.05.27

<関連動画>

高校数学:数学検定準1級2次:問題7 関数の増減と変曲点

アイキャッチ画像
単元: #数学検定・数学甲子園・数学オリンピック等#微分とその応用#微分法#数学検定#数学検定準1級#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
$f(x)=\displaystyle \frac{2x-1}{x^2-x+1}$

について、次の問いに答えなさい。
(1) $f(x)$の増減を調べ、その極値を求めなさい。また、極値をとるときのxの値も求めなさい。
(2) $xy$平面における曲線$y=f(x)$は3個の変曲点をもちます(このことを証明する必要はありません)。これらの変曲点の座標をすべて求めなさい。
この動画を見る 

練習問題5(数検準1級 教員採用試験 極限値)

アイキャッチ画像
単元: #数Ⅱ#数学検定・数学甲子園・数学オリンピック等#微分法と積分法#平均変化率・極限・導関数#その他#数学検定#数学検定準1級#数学(高校生)#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \lim_{x\to\infty} \dfrac{\tan^3x-\sin^3x}{x^5}$
これを解け.
この動画を見る 

数検準1級1次過去問(2番 解と係数の関係)

アイキャッチ画像
単元: #数Ⅱ#数学検定・数学甲子園・数学オリンピック等#複素数と方程式#解と判別式・解と係数の関係#数学検定#数学検定準1級#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
2⃣$x^3-7x^2-4x+1=0$
の3つの解をα、β、γとする。
$α^2+β^2+γ^2$の値を求めよ。

解と係数の関係
$ax^3+bx^2+cx+d=0$
$α+β+γ=- \frac{b}{a}$
$αβ+βγ+γα=\frac{c}{a}$
$αβγ=- \frac{d}{a}$
この動画を見る 

#数検準1級1次-1 #定積分

アイキャッチ画像
単元: #数Ⅱ#数学検定・数学甲子園・数学オリンピック等#微分法と積分法#積分とその応用#定積分#不定積分・定積分#数学検定#数学検定準1級#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
以下の定積分を解け。
$\displaystyle \int_{0}^{1} \displaystyle \frac{x}{x^4+2x^2+1} dx$

出典:数検準1級1次
この動画を見る 

#数検準1級-1#定積分#ますただ

アイキャッチ画像
単元: #数Ⅱ#数学検定・数学甲子園・数学オリンピック等#微分法と積分法#積分とその応用#定積分#不定積分・定積分#数学検定#数学検定準1級#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{e-1} \displaystyle \frac{x}{(x+1)^2} dx$

出典:数検準1級1次
この動画を見る 
PAGE TOP