クイズノックもノックアウト!? 面積比 京都府 - 質問解決D.B.(データベース)

クイズノックもノックアウト!? 面積比 京都府

問題文全文(内容文):
△CFD:△ABC=?
*図は動画内参照

(京都府)
単元: #数Ⅰ#図形と計量#三角比への応用(正弦・余弦・面積)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
△CFD:△ABC=?
*図は動画内参照

(京都府)
投稿日:2023.05.26

<関連動画>

【#6】【因数分解100問】基礎から応用まで!(51)〜(60)【解説付き】

アイキャッチ画像
単元: #数学(中学生)#中3数学#式の計算(展開、因数分解)#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
(51)$a^2(b+c)+b^2(c+a)+c^2(a+b)+3abc$
(52)$ab(a+b)+bc(b+c)+ca(c+a)+3abc$
(53)$x^4-15x^2+9$
(54)$x^4+x^2y^2+y^4$
(55)$x^4+4y^4$
(56)$(a^2+a+1)(a^2-a+1)$
(57)$(x+1)(x-1)(x+3)(x-3)$
(58)$(x-3)^3$
(59)$(x+2)(x-2)(x-3)$
(60)$(2x^2+4xy+2y^2+2x+2y+1)(2x+2y+1)$
この動画を見る 

【数Ⅰ】区間が動く2次関数の最大最小【丁寧に場合分け】

アイキャッチ画像
単元: #数Ⅰ#2次関数#数学(高校生)
指導講師: めいちゃんねる
問題文全文(内容文):
$ aを定数とする.a \leqq x \leqq a+2における関数f(x)=x^2-2x+4の最大値および最小値を求めよ.$
この動画を見る 

数学「大学入試良問集」【6−2 隣接する内接円】を宇宙一わかりやすく

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#図形と計量#三角比への応用(正弦・余弦・面積)#学校別大学入試過去問解説(数学)#数学(高校生)#関西大学
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
3辺$AB,BC,CA$の長さがそれぞれ$7,6,5$の三角形$ABC$において、三角形$ABC$の面積を$S$、三角形$ABC$の内接円$I$のを半径$r$とする。
さらに、2辺$AB,BC$および内接円$I$に接する円の半径を$r_1$とし、半径$r_1$の円は、内接円$I$とは異なるものとする。
(1)$\cos\ B,\sin\displaystyle \frac{B}{2}$の値を求めよ。
(2)$S,r$の値を求めよ。
(3)$\sin\displaystyle \frac{B}{2}$を$r,r_1$を用いて表せ。
(4)$r_1$の値を求めよ。
この動画を見る 

ハルハルさんの作成問題「たぶん名作だと思います。難易度は高め」 図形 三角比

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#式と証明#図形と計量#三角比への応用(正弦・余弦・面積)#整式の除法・分数式・二項定理#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$\theta$:実数
3辺の長さが$2\sin\theta,\ 2\cos\theta,\ \displaystyle \frac{\tan\theta}{\sqrt{ 3 }}$の三角形が単位円に内接している。
この条件を満たしている三角形の面積をすべて求めよ。
この動画を見る 

福田の数学〜明治大学2022年全学部統一入試12AB第1問(2)〜対数方程式と対称式

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#数と式#複素数と方程式#式の計算(整式・展開・因数分解)#指数関数と対数関数#剰余の定理・因数定理・組み立て除法と高次方程式#対数関数#学校別大学入試過去問解説(数学)#明治大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
(2)1ではない正の実数$x,\ y$が次の条件を満たすとする。
$\left\{\begin{array}{1}
xy=\displaystyle\frac{1}{4}\\
\displaystyle\frac{1}{\log_2x}+\displaystyle\frac{1}{\log_2y}=\frac{8}{21}
\end{array}\right.$
このとき、$x+y=\frac{\boxed{\ \ キク\ \ }\sqrt{\boxed{\ \ ケ\ \ }}}{\boxed{\ \ コサ\ \ }}$である。

2022明治大学全統過去問
この動画を見る 
PAGE TOP