福田の数学〜神戸大学2023年理系第4問〜平面に下ろした垂線ベクトルと四面体の体積 - 質問解決D.B.(データベース)

福田の数学〜神戸大学2023年理系第4問〜平面に下ろした垂線ベクトルと四面体の体積

問題文全文(内容文):
4 四面体OABCがあり、辺OA, OB, OCの長さはそれぞれ13, 5, 5である。
OAOB=OAOC=1, OBOC=-11 とする。頂点OからABCを含む平面に下ろした垂線とその平面の交点をHとする。以下の問いに答えよ。
(1)線分ABの長さを求めよ。
(2)実数s, tOH=OA+sAB+tAC を満たすように定めるとき、stの値を求めよ。
(3)四面体OABCの体積を求めよ。

2023神戸大学理系過去問
単元: #数A#大学入試過去問(数学)#図形の性質#空間ベクトル#空間ベクトル#学校別大学入試過去問解説(数学)#空間における垂直と平行と多面体(オイラーの法則)#神戸大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
4 四面体OABCがあり、辺OA, OB, OCの長さはそれぞれ13, 5, 5である。
OAOB=OAOC=1, OBOC=-11 とする。頂点OからABCを含む平面に下ろした垂線とその平面の交点をHとする。以下の問いに答えよ。
(1)線分ABの長さを求めよ。
(2)実数s, tOH=OA+sAB+tAC を満たすように定めるとき、stの値を求めよ。
(3)四面体OABCの体積を求めよ。

2023神戸大学理系過去問
投稿日:2023.06.23

<関連動画>

福田の数学〜慶應義塾大学2022年経済学部第4問〜空間ベクトルと四面体の体積

アイキャッチ画像
単元: #大学入試過去問(数学)#空間ベクトル#空間ベクトル#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
4tを実数とする。また、Oを原点とする座標空間内に
3点A(4,2,5), B(1,1,1), C(2t,43t,6+2t)をとる。
(1)OABの面積を求めよ。
(2)4点O,A,B,Cが同一平面上にあるとき、Cの座標を求めよ。
(3)点Cがxy平面上にあるとき、四面体OABCの体積Vを求めよ。
(4)四面体OABCの体積が(3)で求めたVの3倍となるようなtの値を
すべて求めよ。

2022慶應義塾大学経済学部過去問
この動画を見る 

【数C】空間ベクトル:a=(1,0,1) b=(2,-1,-2) c=(-1,2,0)とし、s,t,uは実数とする。d=(6,-5,0)をsa+tb+ucの形に表せ。

アイキャッチ画像
単元: #空間ベクトル#空間ベクトル#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
a=(1,0,1) b=(2,-1,-2) c=(-1,2,0)とし、s,t,uは実数とする。d=(6,-5,0)をsa+tb+ucの形に表せ。
この動画を見る 

福田の数学〜早稲田大学2022年人間科学部第3問〜空間における面対称な点と折れ線の最小

アイキャッチ画像
単元: #大学入試過去問(数学)#空間ベクトル#空間ベクトル#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
3正四面体OABCの辺BCの中点をM、辺OCを1:2に内分する点をNとする。
点Nと平面OABに関して対称な点をPとする。このとき、
OP=     OA+     OB+     OC    
である。
次に、点Qは平面OAB上の点で|MQ|+|QN|が最小になる点とする。
このとき、
OQ=     OA+     OB    
である。

2022早稲田大学人間科学部過去問
この動画を見る 

【数B】ベクトル:ベクトルの基本⑳空間における平面上の点を係数から求める

アイキャッチ画像
単元: #空間ベクトル#空間ベクトル#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
3点A(2,0,0),B(0,1,0),C(0,0,-2)が与えられたとき、原点Oから平面ABCに下ろした垂線の足を点Hとする。このとき、点Hの座標と線分OHの長さを求めよ
この動画を見る 

福田の数学〜早稲田大学2023年人間科学部第3問〜対称点とベクトルの絶対値の最小値

アイキャッチ画像
単元: #大学入試過去問(数学)#空間ベクトル#空間ベクトル#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
3 空間座標における2点A(2,-3,-1)とB(3,0,1)を通る直線をl1とし、直線l1に関して点C(1,5,-2)と対称な点をDとすると、Dの座標は(    ,     ,     )である。また、点Dを通りl1と平行な直線をl2とし、点Pが直線l2上を、点Qがxy平面上の直線y=x+4 上をそれぞれ自由に動くとき、|PQ|2の最小値は    である。
この動画を見る 
PAGE TOP preload imagepreload image