【高校受験対策】数学-死守10 - 質問解決D.B.(データベース)

【高校受験対策】数学-死守10

問題文全文(内容文):
1.次の各問に答えなさい.

①$9a-5a$を計算しなさい.

②$12\div (-2)+1$を計算しなさい.

③$6\sqrt7-\sqrt{28}$を計算しなさい.

④$x=13$のとき,$x^2-8x+15$の値を求めなさい.

⑤2次方程式$5x^2-9x+3=0$を解きなさい.

⑥連立方程式
$\begin{eqnarray}
\left\{
\begin{array}{l}
3x - 2y = 7 \\
x + y = -1
\end{array}
\right.
\end{eqnarray}$を解きなさい.

⑦右の図の曲線は,$y=ax^2$のグラフです.
グラフから,$a$の値を求めなさい.

⑧上の表は,あるクイズ大会に参加した40人全員の結果をまとめたものです.
クイズの問題は,$A,B,C$の3問ありました.
正解のときに与えられた得点は,$A,B$がそれぞれ1点,$C$が3点で,
正解のとき以外は0点でした.3問のうち2問だけが正解だった人数を求めなさい.

⑨右の図1の四角形$ABCD$は,$AD /\!/ BC$の台形であり,
線分$AC$と$DB$の交点を$E$とします.
$AB=AD,\angle BAC=80° \angle ACB = 30°$のとき,
$\angle DEC$の大きさ$x$を求めなさい.

⑩右の図2は,正四角錐の投影図です.
この正四角錐の立面図は,1辺の長さが$6cm$の正三角形です.
この正四角錐の体積を求めなさい.

⑪ある菓子店では,どら焼きを6個入りの箱と8個入りの箱で販売している.
6個入りの箱と8個入りの箱の組み合わせで,
どら焼きをちょうど34個買うには,6個入りの箱と8 個入りの箱は,
それぞれ何箱になるか求めなさい.
単元: #数学(中学生)#中2数学#中3数学#式の計算(単項式・多項式・式の四則計算)#連立方程式#2次方程式#2次関数#文章題#文章題その他#三角形と四角形
指導講師: とある男が授業をしてみた
問題文全文(内容文):
1.次の各問に答えなさい.

①$9a-5a$を計算しなさい.

②$12\div (-2)+1$を計算しなさい.

③$6\sqrt7-\sqrt{28}$を計算しなさい.

④$x=13$のとき,$x^2-8x+15$の値を求めなさい.

⑤2次方程式$5x^2-9x+3=0$を解きなさい.

⑥連立方程式
$\begin{eqnarray}
\left\{
\begin{array}{l}
3x - 2y = 7 \\
x + y = -1
\end{array}
\right.
\end{eqnarray}$を解きなさい.

⑦右の図の曲線は,$y=ax^2$のグラフです.
グラフから,$a$の値を求めなさい.

⑧上の表は,あるクイズ大会に参加した40人全員の結果をまとめたものです.
クイズの問題は,$A,B,C$の3問ありました.
正解のときに与えられた得点は,$A,B$がそれぞれ1点,$C$が3点で,
正解のとき以外は0点でした.3問のうち2問だけが正解だった人数を求めなさい.

⑨右の図1の四角形$ABCD$は,$AD /\!/ BC$の台形であり,
線分$AC$と$DB$の交点を$E$とします.
$AB=AD,\angle BAC=80° \angle ACB = 30°$のとき,
$\angle DEC$の大きさ$x$を求めなさい.

⑩右の図2は,正四角錐の投影図です.
この正四角錐の立面図は,1辺の長さが$6cm$の正三角形です.
この正四角錐の体積を求めなさい.

⑪ある菓子店では,どら焼きを6個入りの箱と8個入りの箱で販売している.
6個入りの箱と8個入りの箱の組み合わせで,
どら焼きをちょうど34個買うには,6個入りの箱と8 個入りの箱は,
それぞれ何箱になるか求めなさい.
投稿日:2016.12.03

<関連動画>

【高校受験対策】数学-死守32

アイキャッチ画像
単元: #数学(中学生)#中2数学#中3数学#式の計算(単項式・多項式・式の四則計算)#2次方程式#平行と合同#確率#速さ#速さその他#表とグラフ#表とグラフ・集合
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①$-2+5$を計算しなさい。

②$3 + 3 ^ 4 \div (- 9)$を計算しなさい。

③$4(2a - 3) - 2(3a - 5)$を計算しなさい。

④$\dfrac{x-y}{6}-\dfrac{x+y}{8}$を計算しなさい。

⑤$3\sqrt8 - \sqrt{50} + sqrt{18}$を計算しなさい。

⑥2次方程式$(x + 2)(x - 2) = 2(3x - 2)$を解きなさい。

⑦かずよしくんは、自宅から1800mはなれた学校に登校するため、
午前7時30分に家を出発した。
最初は毎分60mの速さで歩いていたが、遅刻しそうになったので、
途中から毎分100mの速さで走ったところ、午前7時56分に学校に着いた。
かずよしくんが走った道のりは何mか、求めなさい。

⑧赤球3個と白球3個が入っている袋がある。
この袋の中から、同時に2個の球を取り出すとき、
赤球と白球が1個ずつである確率を求めなさい。
ただし、どの球を取り出すことも、同様に確からしいものとする。

⑨左下の図1で、正六角形$ABCDEF$に、2つの平行な直線$\ell、m$が交わっており、
交点はそれぞれ$G、H、I、J$である。
$\angle GHF=78°$のとき、$\angle IJE$の大きさを求めなさい。

⑩ある中学校の1年A組25人と1年B組25人の休日の学習時間を調べた。
下の図2、 図3は、それぞれの結果をヒストグラムに表したもので、
2つの図から「1年A組は1年B組 より、$\Box$」と読みとることができた。
$\Box$にあてはまるものとして適切なものを、 下のア~エから1つ選び、記号で書きなさい。

ア→学習時間の分布の範囲が小さい
イ→最頻値を含む階級の度数が多い
ウ→中央値を含む、階級の度数が少ない
エ→学習時間が150分以上の人数が多い

図は動画内参照
この動画を見る 

【ミスのない計算方法…!】文字式:早稲田大阪高等学校~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#中2数学#式の計算(単項式・多項式・式の四則計算)#高校入試過去問(数学)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
(-5xy/6)^3÷(-7x^2y/6)×x^4.を計算しなさい。
この動画を見る 

【テスト対策・中2】1章-3

アイキャッチ画像
単元: #数学(中学生)#中2数学#式の計算(単項式・多項式・式の四則計算)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
次の計算をしよう.

①$(-6)\times (-3)$

②$0.5 \times (-4)$

③$4 \div (-3)$

④$\left(-\dfrac{10}{3}\right)\div (-2)$

⑤$6+5 \times (-2)$

⑥$3\times (-2) - (-20) \div (-4)$

⑦$-\dfrac{3}{5} \times (-4) \div \dfrac{6}{5}$

⑧$\dfrac{6}{5} \div (-3)^2 \times \left(-\dfrac{10}{3}\right)$

⑨$0.8 \times \dfrac{3}{2} \div (-1.2)$

⑩$(-1.35) \div 0.5 \div (-0.3)$
この動画を見る 

【高校受験対策/数学】死守58

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#中3数学#正の数・負の数#式の計算(単項式・多項式・式の四則計算)#連立方程式#式の計算(展開、因数分解)#2次方程式#比例・反比例#空間図形#1次関数#文字と式#標本調査
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守58 @397

①$5-8$を計算せよ

②$-4 \times(-3)^2$を計算せよ。

③$(4a^2b+6ab^2)\div 2ab$を計算せよ。

④$(x+y)^2-5xy$を計算せよ。

⑤絶対値が$4$より小さい整数は何個あるか。

⑥2次方程式$x^2+5x+2=0$を解け。

⑦$y$が$x$に反比例し、$x$と$y$の値が下の表のように対応しているとき、表のAに当てはまる数を求めよ。

⑧図1は円すいの展開図で、底面の半径は$5cm$、側面のおうぎ形の半径は$12cm$である。
$\angle x$の大きさを求めなさい。

⑨一の位の数が0でない、2桁の自然数Aがある。
Aの十の位の数とーの位の数を入れかえてできる数をBとする。
Aの十の位の数は一の位の数の2倍であり、BはAより36小さい。このときAの値を求めよ。

⑩右の表はある市における、7月の日ごとの最高気温を度数分布表にまとめたものである。
この表から読み取ることができることがらとして適切なものを、次のア~オからすべて選べ。

ア $32.0℃$以上$34.0℃$未満の階緑の相対度数は$0.16$よりきい。
イ 階級の幅は$12.0℃$である。
ウ 最高気温が$28.0℃$以上の日は、$5$日である。
エ 最頻値(モード)は、$27.0℃$である。
オ $30.0℃$以上$32.0℃$未満の階級の階級値は、$30.0℃$である。
この動画を見る 

中2数学「図形の文字式の利用」【毎日配信】

アイキャッチ画像
単元: #数学(中学生)#中2数学#式の計算(単項式・多項式・式の四則計算)
指導講師: 中学受験算数・高校受験数学けいたくチャンネル
問題文全文(内容文):
中2~第9回図形の文字式の利用~

例1 
底辺が0、高さがhの三角形Aがあります。
この三角形Aの底辺を4倍にし、高さを半分にした三角形Bを つくると、三角形Bの面積は三角形Aの面積の何倍になりますか。

例2
底面の半径がr、高さがhの円錐Aがあります.
この円錐Aの半径を半分にし、高さを2倍にした円錐Bを つくると、円錐Bの体積は円錐の体積の何倍ですか。
この動画を見る 
PAGE TOP