島根大 整数問題 高校数学 Japanese university entrance exam questions - 質問解決D.B.(データベース)

島根大 整数問題 高校数学 Japanese university entrance exam questions

問題文全文(内容文):
島根大学過去問題
$2^m!$が$2^n$で割り切れるnの最大値をN(m)とする。(m,n自然数)
(1)N(m)をmの式で表せ。
(2)N(m)が素数ならばmも素数であることを証明せよ。
単元: #数Ⅰ#数A#数Ⅱ#大学入試過去問(数学)#数と式#式の計算(整式・展開・因数分解)#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)#島根大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
島根大学過去問題
$2^m!$が$2^n$で割り切れるnの最大値をN(m)とする。(m,n自然数)
(1)N(m)をmの式で表せ。
(2)N(m)が素数ならばmも素数であることを証明せよ。
投稿日:2018.07.04

<関連動画>

【高校受験対策】数学-死守26

アイキャッチ画像
単元: #数学(中学生)#中2数学#中3数学#式の計算(単項式・多項式・式の四則計算)#式の計算(展開、因数分解)#平方根#数と式#確率#円#一次不等式(不等式・絶対値のある方程式・不等式)#文章題#文章題その他
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①$-3+8$を計算しなさい.

②$2(2x - y) - (x - y)$を計算しなさい.

③$\sqrt{27}-\sqrt{63}$を計算しなさい.

④$(x + 5)(x - 3)$を展開しなさい.

⑤$a(b + 8) - (b + 8)$を因数分解しなさい.

⑥2次方程式 $x ^ 2 + x = 3$を解きなさい.

⑦右の図1の円$O$において,
$\angle x$と$\angle y$の大きさをそれぞれ求めなさい.

⑧鉛筆1本の値段を$a$円,ノート1冊の値段を$b$円とする.
「鉛筆3本とノート1冊の代金を払うと,
300円でおつりがもらえた」という数量の関係を,
不等式で表しなさい.ただし,値段は税込みとする.

⑨箱の中に,25本の当たりを含むたくさんのくじが入っている.
このくじをよくかき混ぜた後,48人がこの箱から1人1回ずつくじを引いたところ,
当たりが2本出た.箱の中に最初に入っていたくじの本数は,
およそ何本であったと推定できるか,求めなさい.

⑩ある水族館の入館料は,おとな3人と子ども2人で入ると4020円かかり,
おとな1人と子ども3人で入ると2600円かかる.
おとな1人,子ども1人の入館料をそれぞれ求めなさい.
ただし,入館料は税込みとする.

図は動画内参照
この動画を見る 

奈良県立医大 長方形の面積の最大値

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#2次関数#2次関数とグラフ#学校別大学入試過去問解説(数学)#数学(高校生)#奈良県立医科大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
動画内の図のような三角形に内接する長方形の面積の最大値を求めよ

出典:奈良県立医科大学 問題
この動画を見る 

【中学からの!】三角比の計算(2):特別講義(トッコー)~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#図形と計量#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$\sin\theta+\cos\theta=\dfrac{1}{2}$のとき,$\sin^3\theta+\cos^3\theta$の値を求めよ.
この動画を見る 

「二次関数の最大最小②」【高校数学ⅠA】を宇宙一わかりやすく

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
(1)$y=(x^2-6x)^2+2(x^2-6x)-1$の最小値を求めよ。
(2)$y=(x^2-6x)^2+2(x^2-6x)-1(1 \leqq x \leqq 4)$の最大値と最小値を求めよ。
(3)$x \geqq 0,y \geqq 0x+y=1$のとき、$3x^2+y^2$の最大値と最小値を求めよ。
(4)実数$x,y$について$P=x^2+3y^2-2x+10y+4$の最小値を求めよ。
(5)実数$x,y$について$P=x^2-2xy+3y^2-2x+10y+4$の最小値を求めよ。
この動画を見る 

福田の数学〜上智大学2023年理工学部第1問(2)〜関数の集合と条件

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#集合と命題(集合・命題と条件・背理法)#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large{\boxed{1}}$ (2)$\left\{x|x>0\right\}$を定義域とする関数$f(x)$の集合Aに対する以下の3つの条件を考える。
(P)関数$f(x)$と$g(x)$が共にAの要素ならば、関数$f(x)+g(x)$もAの要素である。
(Q)関数$f(x)$と$g(x)$が共にAの要素ならば、関数$f(x)g(x)$もAの要素である。
(R)$\alpha$が0でない定数で関数$f(x)$がAの要素ならば、関数$\alpha f(x)$もAの要素である。
Aを以下の(i)~(iv)の集合とするとき、条件(P),(Q),(R)のうち成り立つものをすべて解答欄にマークせよ。
(i)$f(1)$=0 を満たす関数$f(x)$全体の集合
(ii)$f(\alpha)$=0 となる正の実数$\alpha$が存在する関数$f(x)$全体の集合
(iii)全ての正の実数$x$に対して$f(x)$>0 が成り立つ関数$f(x)$全体の集合
(iv)定義域$\left\{x|x>0\right\}$のどこかで連続でない関数$f(x)$全体の集合
この動画を見る 
PAGE TOP