【高校数学】数Ⅲ-43 曲線の媒介変数表示④ - 質問解決D.B.(データベース)

【高校数学】数Ⅲ-43 曲線の媒介変数表示④

問題文全文(内容文):
①$x、y$が$\dfrac{x^2}{2}+\dfrac{y^2}{8}=1$を満たす実数のとき、
$2x^2+xy+y^2$の最大値、最小値を求めよ。
単元: #平面上の曲線#媒介変数表示と極座標#数学(高校生)#数C
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①$x、y$が$\dfrac{x^2}{2}+\dfrac{y^2}{8}=1$を満たす実数のとき、
$2x^2+xy+y^2$の最大値、最小値を求めよ。
投稿日:2017.06.24

<関連動画>

福田の数学〜北海道大学2024年理系第1問〜点の一致条件と軌跡

アイキャッチ画像
単元: #平面上の曲線#媒介変数表示と極座標#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ $t$を実数とし、$xy$平面上の点P($\cos 2t$, $\cos t$)および点Q($\sin t$, $\sin 2t$)を考える。
(1)点Pと点Qが一致するような$t$の値をすべて求めよ。
(2)$t$が0<$t$<$2\pi$ の範囲で変化するとき、点Pの軌跡を$xy$平面上に図示せよ。
ただし、$x$軸、$y$軸との共有点がある場合は、それらの座標を求め、図中に記せ。
この動画を見る 

福田の入試問題解説〜慶應義塾大学2022年医学部第3問〜内サイクロイドと極方程式

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#平面上の曲線#図形と方程式#円と方程式#学校別大学入試過去問解説(数学)#媒介変数表示と極座標#慶應義塾大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
(1)座標平面上の点P(x,y)を、点T(s,t)を中心として半時計周りに角$\alpha$だけ
回転させるときに、点Pが点P'(x',y')に移るとする。x'とy'を$x,y,s,t,\alpha$
の式で表すと$x'=\boxed{\ \ ア\ \ }, y'=\boxed{\ \ イ\ \ }$となる。
(2)aを正の実数とする。原点O(0,0)とする半径aの円Cに、半径$\frac{a}{2}$で原点O
を通る円Kを点A(a,0)において内接させる。この円Kを円Cに沿って
滑らないように転がす。ただし、KとCの接点がC上を半時計回りに動くようにする。
そして、接点の座標がはじめて$(a\cos\beta,a\sin\beta)(0 \leqq \beta \leqq 2\pi)$となるようにする。
円Kに対するこの操作は次の2段階の操作を続けて行うことと同等である。
$(\textrm{i})$点B$(\frac{a}{2},0)$を中心として、円Kを$\boxed{\ \ ウ\ \ }$に角$\boxed{\ \ エ\ \ }$だけ回転させる。
$(\textrm{ii})$原点Oを中心として、円Kを$\boxed{\ \ オ\ \ }$に角$\boxed{\ \ カ\ \ }$だけ回転させる。

$\boxed{\ \ ウ\ \ },\boxed{\ \ エ\ \ },\boxed{\ \ オ\ \ },\boxed{\ \ カ\ \ }$の選択肢
時計回り,反時計回り,$\beta,2\beta,\frac{1}{2}\beta$

(3)円Kが点Aにおいて円Cに内接しているとき、Kの内部に固定された点Q(b,0)
(ただし、$0 \lt b \lt a$)をとる。円Kを、Cとの接点がC上を一周するまで(2)に述べた
やり方でCに沿って転がすとき、点Qが動いてできる曲線を$S_1$とする。$S_1$上の
点の座標を(x,y)として、$S_1$の方程式をx,yを用いて書くと$\boxed{\ \ キ\ \ }$となる。

(4)円Kが点Aにおいて円Cに内接しているとき、円Cに固定された点R(0,a)をとる。
今度は円Kを固定して、円Cの方をKに接した状態で滑らないようにKに沿って転がす。
2つの円の接点が円Kを$\boxed{\ \ ク\ \ }$回転したとき、点Rははじめてもとの位置
(0,a)に戻る。Rが描く曲線を$S_2$とする。原点Oを極とし、x軸の正の部分を
始線とする極座標#$(r,\theta)$による$S_2$の極方程式は$r=\boxed{\ \ ケ\ \ }$である。
ただし$r,\theta$はそれぞれ$S_2$上の点の原点からの距離、および偏角である。

2022慶應義塾大学医学部過去問
この動画を見る 

高専数学 微積I #242(2) 媒介変数表示曲線の長さ

アイキャッチ画像
単元: #数Ⅱ#平面上の曲線#微分法と積分法#媒介変数表示と極座標#数学(高校生)#数C
指導講師: ますただ
問題文全文(内容文):
$0\leqq t\leqq 2\pi$とする.
曲線$x=e^{-t}\cos t,y=e^{-t}\sin t$
の長さ$\ell$を求めよ.
この動画を見る 

福田の数学〜浜松医科大学2022年医学部第1問〜媒介変数表示で表された曲線の長さと接線の傾きと体積

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上の曲線#学校別大学入試過去問解説(数学)#媒介変数表示と極座標#浜松医科大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
媒介変数$t\ (t \geqq 0)$に対して、$x=\frac{4}{\sqrt3}t^{\frac{3}{2}},y=2t$で表される曲線C上に
点$P_1$と$P_2$がある。原点から点$P_1$までの曲線の長さは$\frac{28}{9}$であり、点$P_2$における曲線C
の接線の傾きは$\frac{1}{3}$である。以下の問いに答えよ。
(1)点$P_1$の座標$(x_1,y_1)$を求めよ。
(2)点$P_2$の座標$(x_2,y_2)$を求めよ。
(3)曲線Cとy軸、および2直線$y=y_1,y=y_2$で囲まれた図形を、y軸の周りに1回転
してできる回転体を考える。この回転体の体積を求めよ。

2022浜松医科大学医学部過去問
この動画を見る 

【高校数学】数Ⅲ-40 曲線の媒介変数表示①

アイキャッチ画像
単元: #平面上の曲線#媒介変数表示と極座標#数学(高校生)#数C
指導講師: とある男が授業をしてみた
問題文全文(内容文):
次の曲線を,角$\theta$を媒介変数として表せ.

①$9x^2+y^2=16$

②$x^2+y^2=16$

③$4x^2-9y^2=36$
この動画を見る 
PAGE TOP