【数学】新課程「統計」が20分で分かる動画【全国1位の勉強法】 - 質問解決D.B.(データベース)

【数学】新課程「統計」が20分で分かる動画【全国1位の勉強法】

問題文全文(内容文):
新課程の数学「統計」を20分で紹介します
単元: #確率分布と統計的な推測#統計的な推測#数学(高校生)#数B
指導講師: 篠原好【京大模試全国一位の勉強法】
問題文全文(内容文):
新課程の数学「統計」を20分で紹介します
投稿日:2023.02.17

<関連動画>

福田の共通テスト直前演習〜2021年共通テスト数学ⅡB問題3。確率分布、統計の問題。

アイキャッチ画像
単元: #大学入試過去問(数学)#確率分布と統計的な推測#確率分布#統計的な推測#センター試験・共通テスト関連#共通テスト#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}(1)A地区で保護されるジャガイモには1個の重さが200gを超えるものが\\
25%含まれることが経験的にわかっている。花子さんはA地区で収穫された\\
ジャガイモから400個を無作為に抽出し、重さを計測した。そのうち、重さが\\
200gを超えるジャガイモの個数を表す確率変数をZとする。このときZは\\
二項分布B(400,0,\boxed{\ \ アイ\ \ })に従うから、Zの平均(期待値)は\boxed{\ \ ウエオ\ \ }である。\\
\\
(2)Zを(1)の確率変数とし、A地区で収穫されたジャガイモ400個からなる標本において\\
重さが200gを超えていたジャガイモの標本における比率を\\
R=\frac{Z}{400}とする。このとき、Rの標準偏差は\sigma(R)=\boxed{\ \ カ\ \ }である。\\
標本の大きさ400は十分に大きいので、Rは近似的に正規分布\\
N(0,\boxed{\ \ アイ\ \ },(\boxed{\ \ カ\ \ })^2)に従う。\\
したがって、P(R \geqq x)=0.0465となるようなxの値は\boxed{\ \ キ\ \ }となる。\\
ただし、\boxed{\ \ キ\ \ }の計算においては\sqrt3=1.73とする。\\
\\
\\
\boxed{\ \ カ\ \ }の解答群\\
⓪\frac{3}{6400}  ①\frac{\sqrt3}{4}  ②\frac{\sqrt3}{80}  ③\frac{3}{40}\\ 
\\
\\
\boxed{\ \ キ\ \ }については、最も適当なものを、次の⓪~③のうちから一つ選べ。\\
⓪0.209   ①0.251   ②0.286   ③0.395\\
\\
\\
(3)B地区で収穫され、出荷される予定のジャガイモ1個の重さは100gから\\
300gの間に分布している。B地区で収穫され、出荷される予定のジャガイモ\\
1個の重さを表す確率変数をXとするとき、Xは連続型確率変数であり、X\\
の取り得る値xの範囲は100 \leqq x \leqq 300である。\\
花子さんは、B地区で収穫され、出荷される予定の全てのジャガイモのうち、\\
重さが200g以上のものの割合を見積もりたいと考えた。そのために花子さんは\\
Xの確率密度関数f(x)として適当な関数を定め、それを用いて割合を\\
見積もるという方針を立てた。\\
B地区で収穫され、出荷される予定のジャガイモから206個を無作為に抽出\\
したところ、重さの標本平均は180gであった。\\
図1(※動画参照)はこの標本のヒストグラムである。\\
\\
\\
花子さんは図1のヒストグラムにおいて、重さxの増加とともに度数がほぼ\\
一定の割合で減少している傾向に着目し、Xの確率密度関数f(x)として、1次関数\\
f(x)=ax+b (100 \leqq x \leqq 300)\\
を考えることにした。ただし、100 \leqq x \leqq 300の範囲でf(x) \geqq 0とする。\\
このとき、P(100 \leqq X \leqq 300)=\boxed{\ \ ク\ \ }であることから\\
\\
\boxed{\ \ ケ\ \ }・10^4a+\boxed{\ \ コ\ \ }・10^2b=\boxed{\ \ ク\ \ } \ldots①\\
\\
である。\\
花子さんは、Xの平均(期待値)が重さの標本平均180gと等しくなるように\\
確率密度関数を定める方法を用いることにした。\\
連続型確率変数Xの取り得る値xの範囲が100 \leqq x \leqq 300で、その\\
確率密度関数がf(x)のとき、Xの平均(期待値)mは\\
m=\int_{100}^{300}xf(x)dx\\
で定義される。この定義と花子さんの採用した方法から\\
m=\frac{26}{3}・10^5a+4・10^4b=180 \ldots②\\
となる。①と②により、確率密度関数は\\
f(x)=-\ \boxed{\ \ サ\ \ }・10^{-5}x+\boxed{\ \ シス\ \ }・10^{-3} \ldots③\\
と得られる。このようにして得られた③のf(x)は、100 \leqq x \leqq 300の範囲で\\
f(x) \geqq 0を満たしており、確かに確率密度関数として適当である。\\
したがって、この花子さんお方針に基づくと、B地区で収穫され、出荷される\\
予定の全てのジャガイモのうち、重さが200g以上のものは\boxed{\ \ セ\ \ }%\\
あると見積もることができる。\\
\\
\\
\boxed{\ \ セ\ \ }については、最も適当なものを、次の⓪~③のうちから一つ選べ。\\
⓪33 ①34 ②35 ③36
\end{eqnarray}

2022共通テスト数学過去問
この動画を見る 

【高校数学】模試に向けて今からでも間に合う!統計的な推測 2週間完成【③二項分布】

アイキャッチ画像
単元: #確率分布と統計的な推測#確率分布#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
・次の二項分布の平均、分散と標準偏差を求めよ。
$\displaystyle B(5,\frac{1}{6})$
・1個のさいころを8回投げるとき、4以上の目が出る回数をXとする。
(1) 4以上の目が3回以上出る確率を求めよ。
(2) 確率変数Xの期待値と標準偏差を求めよ。
この動画を見る 

【数B】確率分布:正規分布表を用いて確率を求めよう!~標本平均編(何で大きさが大切なの?)

アイキャッチ画像
単元: #確率分布と統計的な推測#確率分布#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
母集団から大きさ4の標本を取り出すとき、何で標準偏差は$\sqrt4$で割るのか?
問題(青チャートより抜粋)ある生物の体長が$N(50,3^2)$の正規分布に従っている。
(1)$P(47\leqq X\leqq 56)$
(2)大きさ4の標本を取り出し標本平均を$\var(X)$とするとき、$P(\var(x)\geqq 53)$
この動画を見る 

福田の数学〜上智大学2022年TEAP理系型第3問〜最後の目が得点になる確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#確率分布と統計的な推測#確率分布#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
各頂点に1から4までの数が1つずつ書いてあり、振るとそれらの1つが等し
い確率で得られる正四面体の形のさいころTがある。これを用いて、2人のプレイ
ヤA, B が以下のようなゲームをする。それぞれの枠内に記したルールに従い、各
プレイヤがTを1回以上振って、最後に出た数をそのプレイヤの得点とし、得点の
多い方を勝ちとする。ここで、同点のときには常にBの勝ちとする。また、振り直
すかどうかは、各プレイヤーとも自分が勝つ確率を最大にするように選択するとす
る。このとき、Aが勝つ確率pについて答えよ。ただし、以下のそれぞれの場合に
ついて、pは0以上の整数k, nを用いて$p =\frac{2k+1}{2^n}$と表せるので、このk, nを
答えよ。
(1)$A, B$がそれぞれ1回ずつTを振る
このときpを表すk, nは、$k=\boxed{ケ} ,\ n=\boxed{コ}$である。

(2)先にAが一回振る。次にBが2回まで振ってよい(Aの得点を知っている状
況で、1回振り直してよい)
このときpを表すk,nは、$k=\boxed{サ} ,\ n=\boxed{シ}$である。

(3)先にAが2回まで振ってよい(Bの得点がまだわからない状況で、1回振り直
してよい)。次にBが1回振る。
このときpを表すk,nは、$k=\boxed{ス} ,\ n=\boxed{セ }$である。

(4)先にAが2回まで振ってよい(Bの得点がまだわからない状況で、1回振り直
してよい)。次にBが2回まで振ってよい(Aの得点を知っている状況で、1回
振り直してよい)
このときpを表すk,nは、$k=\boxed{ソ} ,\ n=\boxed{タ}$である。

(5)先にAが3回まで振ってよい(Bの得点がまだわからない状況で、2回まで振
り直してよい)。次にBが2回まで振ってよい(Aの得点を知っている状況で、
1回振り直してよい)
このときpを表すk,nは、$k=\boxed{チ} ,\ n=\boxed{ツ}$である。

2022上智大学理系過去問
この動画を見る 

【高校数学】ここは大事!統計的な推測 2週間完成【⑥推定】

アイキャッチ画像
単元: #確率分布と統計的な推測#統計的な推測#数学(高校生)#数B
指導講師: 理数個別チャンネル
問題文全文(内容文):
・ある試験を受けた高校生の中から、100人を任意に選んだところ、平均点は58.3点であった。母標準偏差を13.0点として、母平均を信頼度95%で推定せよ。
・ある町の有権者2500人を無作為に抽出して、A政党の支持者を調べたところ、625人であった。この町のA政党支持率を信頼度95%で推定せよ。
この動画を見る 
PAGE TOP