【数学】新課程「統計」が20分で分かる動画【全国1位の勉強法】 - 質問解決D.B.(データベース)

【数学】新課程「統計」が20分で分かる動画【全国1位の勉強法】

問題文全文(内容文):
新課程の数学「統計」を20分で紹介します
単元: #確率分布と統計的な推測#統計的な推測#数学(高校生)#数B
指導講師: 篠原好【京大模試全国一位の勉強法】
問題文全文(内容文):
新課程の数学「統計」を20分で紹介します
投稿日:2023.02.17

<関連動画>

【高校数学】統計的な推測 2週間完成【②同時分布、確率変数の和の期待値、独立な確率変数】

アイキャッチ画像
単元: #確率分布と統計的な推測#確率分布#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
・500円硬貨2枚と100円硬貨1枚を同時に投げる。表の出た硬貨の金額の和の期待値を求めよ。
・Aは2枚、Bは3枚の硬貨を同時に投げ、表の出た枚数をそれぞれX,Yとするとき、積XYの期待値を求めよ。
この動画を見る 

【数B】確率分布:母平均を推定してみよう!

アイキャッチ画像
単元: #確率分布と統計的な推測#統計的な推測#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
母集団が正規分布に従っているが母平均が分からず、母標準偏差は110と分かっている。この母集団から大きさ25のデータを抽出したところ標本平均が1500であった。母平均を信頼度95%で推定せよ。
青チャート数学B例題より抜粋
この動画を見る 

【数B】【確率分布と統計的な推測】確率変数の期待値と分散3 ※問題文は概要欄

アイキャッチ画像
単元: #確率分布と統計的な推測#確率分布#数学(高校生)#数B
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#確率分布と統計的推測#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
1と書かれたカードが2枚,2と書かれたカードが2枚,4と書かれたカードが1枚,計5枚のカードがある。この中から2枚のカードを取り出し,それらに書かれている数の和をXとするとき,確率変数Xの期待値と分散を求めよ。
この動画を見る 

【数B】【確率分布と統計的な推測】正規分布3 ※問題文は概要欄

アイキャッチ画像
単元: #確率分布と統計的な推測#統計的な推測#数学(高校生)#数B
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#確率分布と統計的推測#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
正規分布N(m,δ²)に従う確率変数Xについて、Xのとる値を
m-1.5δ, m-0.5δ, m+0.5δ, m+1.5δ
によって、5つの階級に分けると、各階級に何%ずつ含まれるか。
この動画を見る 

共通テスト2021年詳しい解説〜共通テスト2021年2B第3問〜統計

アイキャッチ画像
単元: #数学(中学生)#大学入試過去問(数学)#確率分布と統計的な推測#確率分布#統計的な推測#センター試験・共通テスト関連#共通テスト#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
3
Q高校の校長先生は、ある日、新聞で高校生の読書に関する記事を読んだ。そこで、
Q高校の生徒全員を対象に、直前の1週間の読書時間に関して、100人の
生徒を無作為に抽出して調査を行った。その結果、100人の生徒のうち、この
1週間に全く読書をしなかった生徒が36人であり、100人の生徒のこの1週間の
読書時間(分)の平均値は204であった。Q高校の生徒全員のこの1週間の読書時間
の母平均をm, 母標準偏差を150とする。

(1)全く読書をしなかった生徒の母比率を0.5とする。このとき、100人の無作為標本の
うちで全く読書をしなかった生徒の数を表す確率変数をXとすると、X    
に従う。また、Xの平均(期待値)は    、標準偏差は    である。

    については、最も適当なものを、次の⓪~⑤のうちから一つ選べ。
⓪正規分布N(0,1)
①二項分布B(0,1)
②正規分布N(100,0.5)
③二項分布B(100,0.5)
④正規分布N(100,36)
⑤二項分布B(100,36)


(2)標本の大きさ100は十分に大きいので、100人のうち全く読書をしなかった生徒
の数は近似的に正規分布に従う。
全く読書をしなかった生徒の母比率を0.5とするとき、全く読書をしなかった生徒
が36人以下となる確率をp5とおく。p5の近似値を求めると、p5=    である。
また、全く読書をしなかった生徒の母比率を0.4とするとき、全く読書をしなかった
生徒が36人以下となる確率をp4とおくと、    である。

    については、最も適当なものを、次の⓪~⑤のうちから一つ選べ。
0.001
0.003
0.026
0.050
0.133
0.497

    の解答群
p4<p5
p4=p5
p4>p5


(3)1週間の読書時間の母平均mに対する信頼度95%の信頼区間を
C1mC2とする。標本の大きさ100は十分大きいことと、1週間
の読書時間の標本平均が204、母標準偏差が150であることを用いると、
C1+C2=    C2C1=    .    であることがわかる。
また、母平均mC1,C2については    

    の解答群
C1mC2が必ず成り立つ
mC2は必ず成り立つが、C1mが成り立つとは限らない
C1mは必ず成り立つが、mC2が成り立つとは限らない
C1mmC2も成り立つとは限らない


(4)Q高校の図書委員長も、校長先生と同じ新聞記事を読んだため、校長先生が
調査をしていることを知らずに、図書委員会として校長先生と同様の調査を
独自に行った。ただし、調査期間は校長先生による調査と同じ直前の1週間であり、
対象をQ高校の生徒全員として100人の生徒を無作為に抽出した。その調査における
全く読書をしなかった生徒の数をnとする。
校長先生の調査結果によると全く読書をしなかった生徒は36人であり、
    

    の解答群
nは必ず36に等しい
nは必ず36未満である
nは必ず36より大きい
nと36との大小はわからない


(5)(4)の図書委員会が行った調査結果による母平均mに対する信頼度95%の
信頼区間をD1mD2、校長先生が行った調査結果による母平均mに対す
る信頼度95%の信頼区間を(3)のC1mC2とする。ただし、母集団は同一
であり、1週間の読書時間の母標準偏差は150とする。
このとき、次の⓪~⑤のうち、正しいものは        である。

    ,     の解答群(解答の順序は問わない。)
C1=D1C2=D2が必ず成り立つ。
C1<D2またはD1<C2のどちらか一方のみが成り立つ。
D2<C1またはC2<D1となる場合もある。
C2C1>D2D1が必ず成り立つ。
C2C1=D2D1が必ず成り立つ。
C2C1<D2D1が必ず成り立つ。

2021共通テスト過去問
この動画を見る 
PAGE TOP preload imagepreload image