#藤田医科大学(2005) #極限 #Shorts - 質問解決D.B.(データベース)

#藤田医科大学(2005) #極限 #Shorts

問題文全文(内容文):
$\displaystyle \lim_{ n \to \infty } \displaystyle \sum_{k=1}^n log(1+\displaystyle \frac{k}{n})^\frac{1}{n}$

出典:2005年藤田医科大学
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#藤田医科大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \lim_{ n \to \infty } \displaystyle \sum_{k=1}^n log(1+\displaystyle \frac{k}{n})^\frac{1}{n}$

出典:2005年藤田医科大学
投稿日:2024.04.16

<関連動画>

中央大(法)正多角形の内角

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#図形の性質#学校別大学入試過去問解説(数学)#中央大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
1つの内角の比が$4:5$となる正多角形の組を求めよ

出典:2001年中央大学法学部 過去問
この動画を見る 

福田の数学〜早稲田大学2021年人間科学部第5問〜漸化式の作成と値の評価

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{5}}$ 半径$r_1=2$の円$O_1$に接する平行でない$2$つの直線がある。接点を$A,B$とし、$2$つの直線の交点を$P$とし、$\angle APB=\frac{\pi}{3}$とする。$O_1$より半径が小さく、$O_1$の中心を通り、直線$AP$と直線$BP$に接する円を$O_2$とする。同様に自然数$n$に対して、$O_n$より半径が小さく、$O_n$の中心を通り、直線$AP$と直線$BP$に接する円を$O_{n+1}$とする。$O_n$の半径を$r_n$とするとき、$\frac{r_n}{r_{n+1}}=\frac{\boxed{\ \ ノ\ \ }}{\boxed{\ \ ハ\ \ }}$ となる。次に、$n$個の円$O_1,O_2,\ldots,O_n$の面積の和を$S_n$とするとき、$S_{10}$の整数部分は$\boxed{\ \ ヒ\ \ }$である。

2021早稲田大学人間科学部過去問
この動画を見る 

山口大 3次方程式の解の個数 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#数学(高校生)#山口大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
05年 山口大学

次の方程式 $x^3-kx+2=0$において$k$ が実数であるときの実数解の個数を求めよ。
この動画を見る 

大学入試問題#296 電気通信大学(2012) #定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#電気通信大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{2}^{4}\displaystyle \frac{dx}{x^2+x-2}$

出典:2012年電気通信大学 入試問題
この動画を見る 

数学「大学入試良問集」【9−3 対数関数と領域図示】を宇宙一わかりやすく

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#学校別大学入試過去問解説(数学)#数学(高校生)#信州大学
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
$log_2\ y+2log_y\ x \leqq 3$を満たす点$(x,y)$の存在する領域を図示せよ。
この動画を見る 
PAGE TOP