【5分で知る!証明問題のストーリー!】整数:明治大学付属中野高等学校~全国入試問題解法 - 質問解決D.B.(データベース)

【5分で知る!証明問題のストーリー!】整数:明治大学付属中野高等学校~全国入試問題解法

問題文全文(内容文):
入試問題 明治大学付属中野高等学校

3けたの正の整数において、上2けたの数から一の位の数を
引いた数が11の倍数
もとの3けたの 整数は、11の倍数 である。
この性質が成り立つわけを説明しなさい。
※3けたの正の整数の百の位の数をx、十の位の数をy、一の位の数をzとする
単元: #数学(中学生)#整数の性質#高校入試過去問(数学)#明治大学付属明治高等学校#明治大学付属中野高等学校#明治大学付属中野高等学校
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
入試問題 明治大学付属中野高等学校

3けたの正の整数において、上2けたの数から一の位の数を
引いた数が11の倍数
もとの3けたの 整数は、11の倍数 である。
この性質が成り立つわけを説明しなさい。
※3けたの正の整数の百の位の数をx、十の位の数をy、一の位の数をzとする
投稿日:2021.09.12

<関連動画>

数学オリンピック 予選の簡単な問題

アイキャッチ画像
単元: #数A#数学検定・数学甲子園・数学オリンピック等#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学オリンピック#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
数学オリンピック予選
10!の正の約数dすべてについて
1d+10!の合計
この動画を見る 

東大の整数問題!かなり良問です【数学 入試問題】【東京大学】

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#ユークリッド互除法と不定方程式・N進法#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
nを1以上の整数とする。

(1)n2+15n2+9の最大公約数dnを求めよ。
(2)(n2+1)(5n2+9)は整数の2乗にならないことを示せ。

東大過去問
この動画を見る 

素数発見法を考えたエラトステネス、2千年以上前に地球の大きさを測っていた。

アイキャッチ画像
単元: #数A#整数の性質#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
素数発見法を考えたエラトステネス、2千年以上前に地球の大きさを測っていた。
この動画を見る 

宮崎大 数学的帰納法 合同式

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数列#数学的帰納法#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
an=2n+1
anのうち5で割り切れるものを小さい順に並べた数列をbkとする.

(1)bkを推定せよ.
(2)(1)の推定が全ての自然数kで成立することを証明せよ.

宮崎大過去問
この動画を見る 

【理数個別の過去問解説】2021年度東京大学 数学 理科・文科第4問(2)解説

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
東京大学 2021年理科・文科第4問(2)
以下の問いに答えよ。
(1)正の奇数K,Lと正の整数A,BがKA=LBを満たしているとする。Kを4で割った余りがLを4で割った余りと等しいならば、Aを4で割った余りはBを4で割った余りと等しいことを示せ。
(2)正の整数a,bがa>bを満たしているとする。このとき、A=4a+1C4b+1,B=aCbに対してKA=LBとなるような正の奇数K,Lが存在することを示せ。
(3)a,bは(2)の通りとし、さらにa-bが2で割り切れるとする。4a+1C4b+14で割った余りはaCbを4で割った余りと等しいことを示せ。
(4)2021C37を4で割った余りを求めよ。
この動画を見る 
PAGE TOP preload imagepreload image