【学んだことを活かせ…!】連立方程式:明治大学付属中野高等学校~全国入試問題解法 - 質問解決D.B.(データベース)

【学んだことを活かせ…!】連立方程式:明治大学付属中野高等学校~全国入試問題解法

問題文全文(内容文):
$ x,y $についての連立方程式 $ \begin{eqnarray}
\left\{
\begin{array}{l}
4x+3y=11 \\
x-ky=-\dfrac{1}{2}k
\end{array}
\right.
\end{eqnarray}$ の解が $\begin{eqnarray}
\left\{
\begin{array}{l}
x=p \\
y=q
\end{array}
\right.
\end{eqnarray}$ であり,
$ p+q=3 $が成り立つ.$ k $の値を求めなさい.

明治大学付属中野高等学校過去問
単元: #数学(中学生)#中2数学#連立方程式#高校入試過去問(数学)#明治大学付属中野高等学校
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$ x,y $についての連立方程式 $ \begin{eqnarray}
\left\{
\begin{array}{l}
4x+3y=11 \\
x-ky=-\dfrac{1}{2}k
\end{array}
\right.
\end{eqnarray}$ の解が $\begin{eqnarray}
\left\{
\begin{array}{l}
x=p \\
y=q
\end{array}
\right.
\end{eqnarray}$ であり,
$ p+q=3 $が成り立つ.$ k $の値を求めなさい.

明治大学付属中野高等学校過去問
投稿日:2024.02.21

<関連動画>

【高校受験対策】数学-死守13

アイキャッチ画像
単元: #数学(中学生)#中2数学#中3数学#式の計算(単項式・多項式・式の四則計算)#連立方程式#2次方程式#確率#円#立体図形#立体図形その他#三角形と四角形
指導講師: とある男が授業をしてみた
問題文全文(内容文):
次の各問いに答えなさい.

①$3-(-2)$を計算しなさい.

②$(-3)^2+5\times (-1)$を計算しなさい.

③$(2x^2-5x)-(3x^2-2x)$を計算しなさい.

④$(-4a^2)\times 18b \div 9ab$を計算しなさい.

⑤$(\sqrt3 + 1)^2$を計算しなさい.

⑥$x$に$-3$をかけて$5$をひいた数は$7$より小さい.
この数量の関係を不等式で表しなさい.

⑦次の連立方程式を解きなさい.
$3x+4y=x+y=2$

⑧2次方程式$(x-2)^2=81$を解きなさい.

⑨右の図で,$y$が$x$に比例するとき,
(ア)にあてはまる数を求めなさい.

⑩$1,2,3,4$の数字が書かれた4枚のカードが袋の中に入っている.
このカードを2枚同時に取り出すとき,
袋の中に残っているカードに書かれている数の和が,
取り出したカードに書かれている数の和より大きくなる確率を求めなさい.

⑪右上の図1は,底面の半径が$6cm$,母線の長さが$30cm$の円すいである.
この円すいの展開図をかいたとき,側面になるおうぎ形の中心角を求めなさい.

⑫右の図2の平行四辺形$ABCD$で,
$AB,BC$上にそれぞれ点$E,F$をとる.
$AC /\!/ EF$のとき,$△ACE$と面積が等しい三角形を3つ書きなさい.

図は動画内を参照
この動画を見る 

2023高校入試数学解説72問目 玉の取り出し  確率 東京都

アイキャッチ画像
単元: #数学(中学生)#中2数学#確率#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
赤玉1コ、白玉1コ、青玉4コが入った袋の中から同時に2コ取り出すとき2コとも青玉である確率は?

2023東京都共通
この動画を見る 

中2数学「1次関数の変域問題①」【毎日配信】

アイキャッチ画像
単元: #数学(中学生)#中2数学#1次関数
指導講師: 中学受験算数・高校受験数学けいたくチャンネル
問題文全文(内容文):
中2~1次関数の変域問題①~

例1 y=x+3において、xの変域が1≦x≦4のときの Yの変域を求めなさい。

例2 y=-2x+1において、xの変域が-3≦x≦2のときの yの変域を求めなさい。
この動画を見る 

面積の等しい三角形

アイキャッチ画像
単元: #数学(中学生)#中2数学#平行と合同#三角形と四角形
指導講師: 数学を数楽に
問題文全文(内容文):
面積が等しい三角形の組をすべて答えよ
*図は動画内参照
2024海星高等学校
この動画を見る 

【最初の2分間が全て!今年の的中問題】図形:高知県公立高等学校~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#平面図形#三角形と四角形#高校入試過去問(数学)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
平行四辺形$ABCD$の点$E$は辺$AD$上で$AE:ED=1:2$である.
点$F$は辺$BC$上で$BE$と$FD$は平行である.
交点$G$は線分$AC$と線分$BE$の交点であり,交点$H$は線分$AC$と線分$FD$の交点である.
$ \triangle ABG \equiv CDH$を証明しなさい.

高知県高校過去問
この動画を見る 
PAGE TOP