【信じて突き進もう!】連立方程式:ラ・サール高等学校~全国入試問題解法 - 質問解決D.B.(データベース)

【信じて突き進もう!】連立方程式:ラ・サール高等学校~全国入試問題解法

問題文全文(内容文):
正の数$x,y,z$が,$x=y(z+2)=(x+y)z$を満たしているとき
$z$の値を求めよ.また,$\dfrac{y}{x}$の値を求めよ.

ラサール高校過去問
単元: #数学(中学生)#中2数学#連立方程式#高校入試過去問(数学)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
正の数$x,y,z$が,$x=y(z+2)=(x+y)z$を満たしているとき
$z$の値を求めよ.また,$\dfrac{y}{x}$の値を求めよ.

ラサール高校過去問
投稿日:2022.07.16

<関連動画>

【これも連立方程式?】3元1次連立方程式③:中学からの連立方程式~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#中2数学#連立方程式#高校入試過去問(数学)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
連立方程式
$ x+y=3...①$
$ y+z=5...②$
$ z+x=4...③$ を解け.

この動画を見る 

【高校受験対策】数学-死守15

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#中3数学#式の計算(単項式・多項式・式の四則計算)#連立方程式#2次方程式#空間図形#確率#2次関数
指導講師: とある男が授業をしてみた
問題文全文(内容文):
次の各問に答えなさい.

①$6x-x$を計算しなさい.

②$6+(-2)\times 4$を計算しなさい.

③$\sqrt{45}-2\sqrt5$を計算しなさい.

④$x=18$のとき,
$x^2-6x-16$の値を求めなさい.

⑤2次方程式$3x^2+7x+1=0$を解きなさい.

⑥連立方程式
$\begin{eqnarray}
\left\{
\begin{array}{l}
3x+2y=18 \\
x+y=7
\end{array}
\right.
\end{eqnarray}$を解きなさい.

⑦関数$y=\dfrac{1}{2}x^2$の値が1から5まで増加するときの変化の割合が,
一次関数$y = ax + 2$ の変化の割合と等しくなりました.
$a$の値を求めなさい.

⑧図1のような円錐の形のチョコレートがあります.
このチョコレートの8分の1の量をもらえることになり,
底面と平行に切って頂点のあるほうをもらうことにしました.
母線の長さを$8cm$とすると,
頂点から母線にそって何$cm$のところを切ればよいかを求めなさい.

⑨図2で,$\angle A=48$の$△ABC$があり,$\angle B,\angle C$の
二等分線をそれぞれかいたときの交点を$D$とします.
このとき,$\angle BDC$の大きさを求めなさい.

➉図3のように,円周上に18個の点が等間隔に並んでおり,
そのうちの点を$P$とします.
1個の黒石を点$P$上に置き,この黒石を,
1から6までの目が出るさいころを1回投げるごとに,
出た目の数だけ円周上の点上を順に動かします.
動かし方は,偶数の目が出たときは右回りに,
奇数の目が出たときは左回りに動かすものとします.
さいころを3回投げたとき,黒石が点$P$に戻っている確率を求めなさい.

図は動画内を参照
この動画を見る 

【そこで手を止めない!】因数分解:関西学院高等部~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#中3数学#式の計算(展開、因数分解)#高校入試過去問(数学)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
次の式を因数分解せよ.
$ (x^2-6x)\times(x^2-6x+17)+72 $

関西学院高等部過去問
この動画を見る 

【直感より理解…!】確率:精華女子高等学校~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#中2数学#確率#高校入試過去問(数学)#精華女子高等学校
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
A、B、C、D、Eの5人から3人の委員を選ぶとき
3人の委員の中にAが含まれる確率を求めなさい
この動画を見る 

佐賀県立高校入試2022年数学3⃣確率

アイキャッチ画像
単元: #数学(中学生)#中2数学#確率#高校入試過去問(数学)#佐賀県立高校
指導講師: 重吉
問題文全文(内容文):
佐賀県立高校入試2022年数学3⃣確率
-----------------
(ア)
この箱から1本のくじをひくとき、2等のあたりくじである確率を求めなさい。

(イ)
この箱から同時に2本のくじをひくとき、2本とも2等のあたりくじである確率を求めなさい。

(ウ)
この箱から同時に2本のくじをひくとき、1本はあたりくじで、もう1本ははずれくじである確率を求めなさい。

(エ)
この箱から同時に2本のくじをひくとき、少なくとも1本はあたりくじである確率を求めなさい。
この動画を見る 
PAGE TOP