対数の性質 - 質問解決D.B.(データベース)

対数の性質

問題文全文(内容文):
$a^{\log_{b}c}=c^{\log_{b}a}$

を示せ。
単元: #数Ⅱ#指数関数と対数関数#対数関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a^{\log_{b}c}=c^{\log_{b}a}$

を示せ。
投稿日:2023.10.19

<関連動画>

【京大解答速報】2019年数学(文系)大問1の解説~シノハラ京大塾【篠原好】

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#指数関数と対数関数#整式の除法・分数式・二項定理#対数関数#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 篠原好【京大模試全国一位の勉強法】
問題文全文(内容文):
【京大解答速報】「2019年数学(文系)大問1」について解説しています。
この動画を見る 

林俊介 語りかける東大数学

アイキャッチ画像
単元: #対数関数#関数と極限
指導講師: 鈴木貫太郎
問題文全文(内容文):
(1)$n\in Z+$

$g(x):=\begin{eqnarray}
\left\{
\begin{array}{l}
\dfrac{\cos(\pi x)+1}{2} (\vert x \vert \leq 1) \\
0 (\vert x \vert \gt 1)
\end{array}
\right.
\end{eqnarray}$

$f(x):$連続であり,$p,q \in R$

$\vert x\vert \leq \dfrac{1}{n}$でつねに$p\leq f(x)\leq q$
$p\leq n\dfrac{\displaystyle \int_{-1}^{1} g(nx) f(x) dx\leq q}{I}$を示せ.

(2)$h(x)=:\begin{eqnarray}
\left\{
\begin{array}{l}
-\dfrac{\pi}{2}\sin(\pi x) (\vert x\vert \leq 1) \\
0 (\vert x\vert \gt 1)
\end{array}
\right.
\end{eqnarray}$

次の極限を求めよ.

$\displaystyle \lim_{n\to\infty} n^2\displaystyle \int_{-1}^{1} h(nx)\log(1+e^{x+1})dx $

(1)$g(x)=\begin{eqnarray}
\left\{
\begin{array}{l}
\dfrac{\cos(\pi x)+1}{2} (\vert x\vert \leq 1) \\
0 (\vert x\vert \gt 1)
\end{array}
\right.
\end{eqnarray}$

$p\leq n \displaystyle \int_{-1}^{1} g(nx) f(x)dx \leq q$

2015東大過去問
この動画を見る 

福田のおもしろ数学319〜桁数と極限

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#対数関数#関数と極限#数列の極限#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
自然数 $n$ に対して $3^n$ の桁数を $k_n$ とするとき、$\displaystyle \lim_{n \to \infty} \frac{k_n}{n}$ を求めよ。
この動画を見る 

広島大 対数

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#学校別大学入試過去問解説(数学)#数学(高校生)#広島大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
(1)
$log_{2}3$は無理数、証明せよ


(2)
$p,q$は異なる自然数
$p$ $log_{2}3$と$q$ $log_{2}3$の小数部分は異なる。
証明せよ


(3)
$log_{2}3$の小数第一位の数を求めよ

出典:広島大学 過去問
この動画を見る 

どっちがでかい?対数勝負 昭和(医)

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#学校別大学入試過去問解説(数学)#数学(高校生)#昭和大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ \log a\sqrt{ab}$ vs $\log_{\sqrt{ab}}b$

$a>1,b<1,a \neq b$とするとき,どちらが大きいか?

昭和(医)過去問
この動画を見る 
PAGE TOP