【数学】中2-16 連立方程式③ 加減法の応用編 - 質問解決D.B.(データベース)

【数学】中2-16 連立方程式③ 加減法の応用編

問題文全文(内容文):
係数が揃っていないなら①____算使って揃えちゃえばいい!

$\begin{eqnarray}
\left\{
\begin{array}{l}
x+2y=3 \\
2x-3y=-22
\end{array}
\right.
\end{eqnarray}$

$\begin{eqnarray}
\left\{
\begin{array}{l}
3x-2y=-8 \\
7x+4y=-10
\end{array}
\right.
\end{eqnarray}$

$\begin{eqnarray}
\left\{
\begin{array}{l}
2x+3y=3 \\
3x+5y=7
\end{array}
\right.
\end{eqnarray}$

$\begin{eqnarray}
\left\{
\begin{array}{l}
2x-3y=-19 \\
5x+4y=10
\end{array}
\right.
\end{eqnarray}$
単元: #数学(中学生)#中2数学#連立方程式
指導講師: とある男が授業をしてみた
問題文全文(内容文):
係数が揃っていないなら①____算使って揃えちゃえばいい!

$\begin{eqnarray}
\left\{
\begin{array}{l}
x+2y=3 \\
2x-3y=-22
\end{array}
\right.
\end{eqnarray}$

$\begin{eqnarray}
\left\{
\begin{array}{l}
3x-2y=-8 \\
7x+4y=-10
\end{array}
\right.
\end{eqnarray}$

$\begin{eqnarray}
\left\{
\begin{array}{l}
2x+3y=3 \\
3x+5y=7
\end{array}
\right.
\end{eqnarray}$

$\begin{eqnarray}
\left\{
\begin{array}{l}
2x-3y=-19 \\
5x+4y=10
\end{array}
\right.
\end{eqnarray}$
投稿日:2013.05.20

<関連動画>

ルートの入った連立方程式 仙台育英

アイキャッチ画像
単元: #数学(中学生)#中2数学#連立方程式#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
連立方程式を解け
$\begin{eqnarray}
\left\{
\begin{array}{l}
\sqrt 3 x - \sqrt 2 y = 1 \\
\sqrt 2 x + \sqrt 3 y = 1
\end{array}
\right.
\end{eqnarray}
$
仙台育英学園高等学校
この動画を見る 

福田の数学〜京都大学2023年理系第6問〜チェビシェフの多項式と論証(PART1)

アイキャッチ画像
単元: #式の計算(単項式・多項式・式の四則計算)#数Ⅱ#大学入試過去問(数学)#三角関数#学校別大学入試過去問解説(数学)#その他#推理と論証#推理と論証#京都大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{6}$ pを3以上の素数とする。また、θを実数とする。
(1)$\cos3\theta$と$\cos4\theta$を$\cos\theta$の式として表せ。
(2)$\cos\theta$=$\frac{1}{p}$のとき、θ=$\frac{m}{n}$・$\pi$となるような正の整数m,nが存在するか否かを理由をつけて判定せよ。

チェビシェフの多項式
$\cos n\theta$=$T_n$($\cos\theta$)を満たすn次の多項式$T_n(x)$が存在し、その係数はすべて整数であり、最高次の係数が$2^{n-1}$である。
これが、すべての自然数nについて成り立つことを数学的帰納法で証明せよ。

2023京都大学理系過去問
この動画を見る 

いろいろな四角形 暁

アイキャッチ画像
単元: #数学(中学生)#中2数学#三角形と四角形
指導講師: 数学を数楽に
問題文全文(内容文):
四角形の性質について正しいものを1つ選べ。
⓪4つの角がすべて等しい四角形は正方形である。
①対角線が垂直に交わる四角形は長方形である。
②対角線の長さが等しい四角形は長方形である。
③対角線がそれぞれの中点で交わる四角形は平行四辺形である。

暁高等学校
この動画を見る 

【高校受験対策】数学-関数38

アイキャッチ画像
単元: #数学(中学生)#中2数学#1次関数#平行と合同
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・関数38

Q.
右の図で、直線$l$は関数$y=\frac{1}{2}x+6$のグラフです。点$A$・点$B$は直線$l$上の点で、点$A$の座標は$(-2,5)$、点$B$の座標は$(4,8)$です。 このとき次の各問に答えなさい。

①2点、$o,A$を通る直線の傾きを求めなさい。
点$P$は$x$軸上の$x>0$の部分にあり、$△APB$の面積は$26cm^2$です。

②点$P$の座標を求めなさい。

③点$P$を通り、$△APB$の面積を2等分する直線の式を求めなさい。
この動画を見る 

福田のおもしろ数学387〜連立方程式を解こう

アイキャッチ画像
単元: #数学(中学生)#中2数学#連立方程式
指導講師: 福田次郎
問題文全文(内容文):
$x,y,z$は正の実数とする。

$\begin{eqnarray}
\left\{
\begin{array}{l}
x - y + \dfrac{1}{z}=2025 \\
y - z + \dfrac{1}{x}=2025 \\\
z - x + \dfrac{1}{y}=2025
\end{array}
\right.
\end{eqnarray}$

を解いて下さい。
この動画を見る 
PAGE TOP