【東京大学2007[6]】不等式の証明、log2の評価 - 質問解決D.B.(データベース)

【東京大学2007[6]】不等式の証明、log2の評価

問題文全文(内容文):
$(1)0 \lt x\lt aのとき$
\begin{equation}
\frac{2x}{a} \lt \int^{a+x}_{a-x} \frac{1}{t}dt \lt x(\frac{1}{a+x}+\frac{1}{a-x})
\end{equation}を示せ.
$(2)0.68\lt log2\lt 0.71を示せ.$
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#微分法と積分法#対数関数#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師: 受験メモ山本
問題文全文(内容文):
$(1)0 \lt x\lt aのとき$
\begin{equation}
\frac{2x}{a} \lt \int^{a+x}_{a-x} \frac{1}{t}dt \lt x(\frac{1}{a+x}+\frac{1}{a-x})
\end{equation}を示せ.
$(2)0.68\lt log2\lt 0.71を示せ.$
投稿日:2020.07.25

<関連動画>

19神奈川県教員採用試験(数学:10番 数列・対数)

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#対数関数#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$\boxed{10}$${a_n}$:等比数列,$a_1=2,r=3$
$10^4 < a_n <10^7$
をみたすnの個数を求めよ。
$log_{10}2=0.301$ , $log_{10}3=0.4771$
この動画を見る 

【数Ⅱ】【指数関数と対数関数】常用対数2 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#対数関数#数学(高校生)
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#指数関数と対数関数#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
10進法で表された数$12^{100}$を2進法で表したときの桁数を求めよ。
ただし, $log_{10}2=0.3010$, $log_{10}3=0.4771$とする。

$log_{10}1.4=0.416$, $log_{10}1.8=0.255$, $log_{10}2.1=0.322$とするとき,
$log_{10}2$, $log_{10}3$, $log_{10}7$の値を求めよ。
また, $log_{10}63$の値を求めよ。

次の問いに答えよ。
(1) $log_{2}3$が無理数であることを証明せよ。
(2) (1)を用いて$log_{2}6$が無理数であることを証明せよ。
(3) (2)を用いて$log_{6}4$が無理数であることを証明せよ。
この動画を見る 

放物線 栃木県(改) 正答率5%!?

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#対数関数#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
Aのx座標=?
*図は動画内参照

栃木県(改)
この動画を見る 

福田の数学〜大阪大学2023年文系第2問〜対数関数と3次関数の最大

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ 正の実数a, xに対して
y=$(\log_{\frac{1}{2}}x)^3$+$a\log_{\sqrt 2}x$$(\log_4x^3)$
とする。
(1)t=$\log_2x$とするとき、yをa, tを用いて表せ。
(2)xが$\frac{1}{2}$≦x≦8の範囲を動くとき、yの最大値Mをaを用いて表せ。

2023大阪大学文系過去問
この動画を見る 

【数Ⅱ】【指数関数と対数関数】対数不等式1 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#対数関数#数学(高校生)
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#指数関数と対数関数#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の不等式を解け。
(1) $2\log_{0.1}{(x-1)} < \log_{0.1}{(7-x)}$
(2) $\log_{10}{(x-3)} + \log_{10}{x} \leq 1$
(3) $\log_{2}{(1-x)} + \log_{2}{(3-x)} < 1 + \log_{2}{3}$

次の方程式を解け。
(1) $2^x = 3^{2x-1}$
(2) $5^{2x} = 3^{x+2}$

次の方程式、不等式を解け。
(1) $(\log_{3}{x})^2 - \log_{2}{x^4} + 3 = 0$
(2) $(\log_{\frac{1}{2}}{x})^2 - \log_{\frac{1}{4}}x = 0$
(3) $(\log_{3}{x})^2 - \log_{9}{x} - 2 \leq 0$
(4) $(\log_{\frac{1}{3}}{x})^2 + \log_{\frac{1}{3}}{x^2} - 15 > 0$

次のxについての不等式を解け。
ただし、$a$ は 1 と異なる正の定数とする。
(1) $\log_{a}{(x+3)} < \log_{a}{(2x+2)}$
(2) $\log_{a}{(x^2 - 3x - 10)} \geq \log_{a}{(2x - 4)}$
この動画を見る 
PAGE TOP