大学入試問題#541「初手が大事」長崎大学(2023)定積分 - 質問解決D.B.(データベース)

大学入試問題#541「初手が大事」長崎大学(2023)定積分

問題文全文(内容文):
$\displaystyle \int_{1}^{2} \displaystyle \frac{x^2}{x^2+(3-x)^2} dx$

出典:2023年長崎大学 入試問題
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#長崎大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{1}^{2} \displaystyle \frac{x^2}{x^2+(3-x)^2} dx$

出典:2023年長崎大学 入試問題
投稿日:2023.05.20

<関連動画>

【高校数学】静岡大学2023年の積分の問題をその場で解説しながら解いてみた!毎日積分87日目~47都道府県制覇への道~【㉚静岡】【毎日17時投稿】

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#静岡大学#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
【静岡大学 2023】
関数$f(x)=x^3e^{-x^2}$について、次の問いに答えよ。ただし、$e$は自然対数の底とする。必要ならば$\displaystyle \lim_{x \to \infty}\frac{x^3}{e^{x^2}}=0$を用いてもよい。
(1) 関数$f(x)$の増減を調べ、極値を求めよ。
(2) $a>0$とする。方程式$e^{x^2}-ax^3=0$の実数解の個数を求めよ。
(3) 曲線$y=f(x)$と$x$軸および直線$x=2$で囲まれた図形の面積を求めよ。
この動画を見る 

大学入試問題#239 弘前大学(2012) #定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#弘前大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{1}^{3}(x-\displaystyle \frac{1}{x})(log\ x)^2dx$を計算せよ。

出典:2012年
この動画を見る 

福田の数学〜中央大学2022年理工学部第3問〜指数関数の接線と囲まれる部分の面積

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#指数関数#微分とその応用#積分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#定積分#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#中央大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
関数 $f(x) = -xe^x$ を考える。曲線$C: y = f(x)$の点(a, f(a)) における接線を$l_a$と
し、接線$l_a$とy軸の交点を $(0, g(a))$ とおく。以下の問いに答えよ。
(1) 接線$l_a$の方程式と$g (a)$を求めよ。
以下、aの関数$g (a)$ が極大値をとるときのaの値をbとおく。
(2) bを求め、点$(b, f(b))$ は曲線Cの変曲点であることを示せ。
(3) 曲線Cの点 $(b, f(b))$ における接線$l_b$と x軸の交点のx座標cを求めよ。さらに、
$c\leqq x\leqq 0$の範囲で曲線Cの概形と接線l_bをxy 平面上に図示せよ。
(4)曲線C、接線$l_b$およびy軸で囲まれた部分の面積Sを求めよ。

2022中央大学理工学部過去問
この動画を見る 

#高専_3#定積分#元高専教員

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#積分とその応用#定積分#不定積分・定積分#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{-1}^{1} (e^x-e^{-x})^2(e^x+e^{-x}) dx$
この動画を見る 

【高校数学】千葉大学の積分の問題をその場で解説しながら解いてみた!毎日積分94日目~47都道府県制覇への道~【㊲千葉】【毎日17時投稿】

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#千葉大学#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
【千葉大学 2023】
等式$\displaystyle f(x)=x^2+\int_{-1}^{2}(xf(t)-t)dt$を満たす関数$f(x)$を求めよ。
この動画を見る 
PAGE TOP