大学入試問題#479「教科書で紹介されてそう」 山形大学(2016) 微積の応用① - 質問解決D.B.(データベース)

大学入試問題#479「教科書で紹介されてそう」  山形大学(2016) 微積の応用①

問題文全文(内容文):
$f(x)=\sin^2x+2\displaystyle \int_{0}^{\frac{\pi}{2}} f(t)\cos\ t\ dx$を満たす$f(x)$を求めよ。

出典:2016年山形大学 入試問題
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$f(x)=\sin^2x+2\displaystyle \int_{0}^{\frac{\pi}{2}} f(t)\cos\ t\ dx$を満たす$f(x)$を求めよ。

出典:2016年山形大学 入試問題
投稿日:2023.03.17

<関連動画>

大学入試問題#921「癖がない綺麗な神問題」

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#千葉大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$a \gt 1$
$I(a)=\displaystyle \int_{0}^{ \pi }\displaystyle \frac{a\sin\theta}{(a^2-2a \cos\theta+1)^{\frac{3}{2}}}d\theta$

1.$I(a)$を求めよ。
2.$\displaystyle \sum_{n=2}^{\infty} I(n)$の値を求めよ。

出典:1997年千葉大学
この動画を見る 

福田の数学〜千葉大学2023年第7問〜三角関数と定積分の最大Part1

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#加法定理とその応用#積分とその応用#定積分#学校別大学入試過去問解説(数学)#千葉大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{7}$ 関数
$f(x)$=$\displaystyle\left|\cos x-\sqrt5\sin x-\frac{3\sqrt2}{2}\right|$
について、以下の問いに答えよ。
(1)$f(x)$の最大値を求めよ。
(2)$\displaystyle\int_0^{2\pi}f(x)dx$ を求めよ。
(3)$S(t)$=$\displaystyle\int_t^{t+\frac{\pi}{3}}f(x)dx$ とおく。このとき$S(t)$の最大値を求めよ。
この動画を見る 

福田の数学〜九州大学2022年文系第4問〜定義に従って定積分の性質を証明する

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#微分法と積分法#恒等式・等式・不等式の証明#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#九州大学
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{4}}\ 定積分について述べた次の文章を読んで、後の問いに答えよ。\\
f(x)を整式とする。F'(x)=f(x)となるF(x)を1つ選び、\\
f(x)のaからbまでの定積分を\\
\int_a^bf(x)dx=F(b)-F(a)         \ldots①\\
で定義する。定積分の値はF(x)の選び方によらずに定まる。\\
定積分は次の性質(A),(B),(C)をもつ。\\
(A)\int_a^b\left\{kf(x)+lg(x)\right\}dx=k\int_a^bf(x)dx+l\int_a^bg(x)dx\\
(B) a \leqq c \leqq bのとき、\int_a^cf(x)dx+\int_c^bf(x)dx=\int_a^bf(x)dx\\
(C)区間a \leqq x \leqq bにおいてg(x) \geqq h(x)ならば、\int_a^bg(x)dx \geqq \int_a^bh(x)dx\\
ただし、f(x),g(x),h(x)は整式、k,lは定数である。\\
以下、f(x)が区間0 \leqq x \leqq 1上で増加関数になる場合を考える。\\
nを自然数とする。定積分の性質\boxed{\ \ ア\ \ }を用い、定数関数に対する定積分の計算を行うと、\\
\frac{1}{n}f(\frac{i-1}{n}) \leqq \int_{\frac{i-1}{n}}^{\frac{i}{n}}f(x)dx \leqq \frac{1}{n}f(\frac{i}{n})  (i = 1,2,\ldots,n)     \ldots②\\
が成り立つことがわかる。S_n=\frac{1}{n}\sum_{i=1}^nf(\frac{i-1}{n})とおくと、\\
不等式②と定積分の性質\boxed{\ \ イ\ \ }より次の不等式が成り立つ。\\
0 \leqq \int_0^1f(x)dx-S_n \leqq \frac{f(1)-f(0)}{n}     \ldots③\\
よって、nを限りなく大きくするとS_nは\int_0^1f(x)dxに限りなく近づく。\\
\\
\\
(1)関数F(x),G(x)が微分可能であるとき、\left\{F(x)+G(x)\right\}'=F'(x)+G'(x)が\\
成り立つことと定積分の定義①を用いて、性質(A)でk=l=1とした場合の等式\\
\int_a^b\left\{f(x)+g(x)\right\}dx=\int_a^bf(x)dx+\int_a^bg(x)dx を示せ。\\
(2)定積分の定義①と関数の増減と導関数の関係を用いて、次を示せ。\\
a \lt bのとき、区間a \leqq x \leqq bにおいてg(x) \gt 0ならば、\int_a^bg(x)dx \gt 0\\
(3)(A),(B),(C)のうち、空欄\boxed{\ \ ア\ \ }に入る記号として最もふさわしいものを\\
1つ選び答えよ。また、文章中の下線部の内容を詳しく説明することで、\\
不等式②を示せ。\\
(4)(A),(B),(C)のうち、空欄\boxed{\ \ イ\ \ }に入る記号として最もふさわしいものを\\
1つ選び答えよ。また、不等式③を示せ。\\
\end{eqnarray}

2022九州大学文系過去問
この動画を見る 

福田の数学〜早稲田大学2023年理工学部第3問〜逆関数とで囲まれる面積

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#微分とその応用#積分とその応用#関数(分数関数・無理関数・逆関数と合成関数)#微分法#関数の変化(グラフ・最大最小・方程式・不等式)#定積分#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ 実数xに対して関数f(x)をf(x)=$e^{x-2}$で定め、正の実数xに対して関数g(x)をg(x)=$\log x$+2で定める。またy=f(x), y=g(x)のグラフをそれぞれ$C_1$,$C_2$とする。以下の問いに答えよ。
(1)f(x)とg(x)がそれぞれ互いの逆関数であることを示せ。
(2)直線y=xと$C_1$が2点で交わることを示せ。ただし、必要なら2<e<3を証明しないで用いてよい。
(3)直線y=xと$C_1$との2つの交点のx座標を$\alpha$, $\beta$とする。ただし$\alpha$<$\beta$とする。
直線y=xと$C_1$,$C_2$をすべて同じxy平面上に図示せよ。
(4)$C_1$と$C_2$で囲まれる図形の面積を(3)の$\alpha$と$\beta$の多項式で表せ。

2023早稲田大学理工学部過去問
この動画を見る 

大学入試問題#488「もはや盤上この一手」 横浜市立大学医学部(2022) #定積分

アイキャッチ画像
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{-\frac{\pi}{3}}^{\frac{\pi}{3}} \displaystyle \frac{t\ \sin\ t}{1+\pi^{\sin^3t}}dt$

出典:2022年横浜市立大学 入試問題
この動画を見る 
PAGE TOP