ここで間違える。投影図 正四角錐 - 質問解決D.B.(データベース)

ここで間違える。投影図 正四角錐

問題文全文(内容文):
正四角錐の体積=?
*図は動画内参照
岐阜県
単元: #数A#図形の性質#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
正四角錐の体積=?
*図は動画内参照
岐阜県
投稿日:2023.10.08

<関連動画>

半円と正方形

アイキャッチ画像
単元: #数A#図形の性質#周角と円に内接する四角形・円と接線・接弦定理#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
半円と正方形
x:y=?
*図は動画内参照
この動画を見る 

【高校数学】  数A-7  順列① ・ 基本編

アイキャッチ画像
単元: #数A#場合の数と確率#場合の数#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①${}_6 \mathrm{ P }_3=$
②${}_3 \mathrm{ P }_3=$
③${}_7 \mathrm{ P }_2=$
④${}_9 \mathrm{ P }_1=$
⑤$5! =$
⑥${}_6 \mathrm{ P }_0=$

⑦5個の文字a,b,c,d,eから異なる3個を選んで1列に並べるときの並べ方は何通り?

⑧30人の部員の中から、兼任を認めないで、部長・副部長を各1人選ぶとき、選び方は何通り?

⑨異なる7個の玉を机の上で円形に並べるとき、並べ方は何通り?
この動画を見る 

【平面図形の基礎はこれ!】三角形の性質の基礎編1〔高校数学 数学〕

アイキャッチ画像
単元: #数A#図形の性質#三角形の辺の比(内分・外分・二等分線)#数学(高校生)
指導講師: 3rd School
問題文全文(内容文):
三角形の性質の基礎について解説します。
この動画を見る 

2024年共通テスト解答速報〜数学ⅠA第1問(2)〜福田の入試問題解説

アイキャッチ画像
単元: #数Ⅰ#数A#図形の性質#図形と計量#三角形の辺の比(内分・外分・二等分線)#数学(高校生)#大学入試解答速報#数学#共通テスト
指導講師: 福田次郎
問題文全文(内容文):
図 1 のように、電柱の影の先端は坂の斜面(以下、坂)にあるとする。また、坂には傾斜を表す道路標識が設置されていてをそこには 7 %と表示されているとする。電柱の太さと影の幅は無視して考えるものとする。また。地面と坂は平面であるとし、地面と坂が交わってできる直線を$\ell$とする。電柱の先端を点 A とし、根もとを点 B とする。電柱の影について。地面にある部分を線分 BC とし、坂にある部分を線分 CD とする。線分BC、CDがそれぞれ$\ell$と重直であるとき、電柱の影は坂に向かってまっすぐにのびているということにする。
※図は動画内参照
電柱の影が坂に向かってまっすぐにのびているとする。このとき、 4 点 A.B. C. D を通る平面は$\ell$と重直である。その平面において、図 2 のように、直線 ADと直線BCの交点を P とすると、太陽高度とは $\angle APB$の大きさのことである。
※図は動画内参照
道路標識の 7 %という表示は、この坂をのぼったとき、100m の水平距離に対して 7m の割合で高くなることを示している。nを1以上 9 以下の整数とするとき、坂の傾斜角$\angle DCP$の大きさについて
$n° \lt \angle DCP \lt n°+1°$
を満たすnの値は シ である。
 以下では、$\angle DCP$の大きさは、ちょうどシ°であるとする。
ある日、電柱の影が坂に向かってまっすぐにのびていたとき、影の長さを調べたところBC= 7 m、 CD= 4 m であり、太陽高度は $angle\ APB$=45°であった。点 D から直線 AB に重直な直線を引き、直物 AB との交点を E とするとき
BE=ス×セm
であり
DE=(ソ+アタ×チ)m
である。よって電柱の高さは、小数点第2位で四捨五入するとソmであることがわかる。
別の日、電柱の影が坂に向かってまっすぐにのびていたときの太陽高度は刻= 42°であった。電住の高さがわかったので、前回調べた日からの影の長さの変化を知ることができる。電柱の影について、坂にある第分の長さは
$\dfrac{AB-テ×ト}{ナ+ニ×ト}m$
である。AB=ツmとして、これを計算することにより、この日の電柱の陰について、坂にある部分の長さは、前回調べた4mより約1.2mだけ長いことが分かる。

2024共通テスト過去問
この動画を見る 

福田のおもしろ数学462〜2n+1角形の頂点と辺に異なる整数を割り当てて辺上の合計を等しくする方法

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$2n+1$個の頂点をもつ多角形がある。

この多角形の頂点と辺の中点に数

$1,2,3,\cdots,4n+2$をすべて使用してラベルをつけ、

各辺に割り当てられた

$3$つの数の和が等しくなるようにせよ。
    
この動画を見る 
PAGE TOP