#大学入試問題#853「ファンタスティックな解答求む」 #大阪工業大学(2023) #定積分 - 質問解決D.B.(データベース)

#大学入試問題#853「ファンタスティックな解答求む」 #大阪工業大学(2023) #定積分

問題文全文(内容文):
$\displaystyle \int_{1}^{4} \displaystyle \frac{x-1}{2x-\sqrt{ x }} dx$

出典:2023年大阪工業大学 入試問題
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#大阪工業大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{1}^{4} \displaystyle \frac{x-1}{2x-\sqrt{ x }} dx$

出典:2023年大阪工業大学 入試問題
投稿日:2024.06.18

<関連動画>

福田の数学〜青山学院大学2022年理工学部第3問〜関数の増減と極値

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#微分とその応用#微分法#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#青山学院大学
指導講師: 福田次郎
問題文全文(内容文):
関数
$f(x)=\sqrt{1-2\cos x}-\frac{1}{2}x$
について以下の問いに答えよ。
(1)$f'(x)$を求めよ。
(2)$f'(x) \gt 0$ となるxの値の範囲を求めよ。
(3)f(x)の増減を調べ、極値を求めよ。

2022青山学院大学理工学部過去問
この動画を見る 

福田の数学〜東京理科大学2024創域理工学部第2問〜放物線の接線と極限

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#関数と極限#関数の極限#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$m$を正の実数とし、関数$f(x)$を$f(x)=-mx^2+1$と定める。座標平面上の曲線$y=f(x)$を$C$とおき、負の実数$a$に対して点$\textrm{A}(a,f(a))$における曲線$C$の接線を$l_1$とおく。直線$l_1$と$y$軸との交点を$\textrm{P}$とし、点$\textrm{P}$を通り$l_1$に垂直な直線を$l_2$とおき、$l_2$と$x$軸の交点を$\textrm{Q}$とする。
(1) 点$\textrm{P}$の座標を$a$と$m$を用いて表せ。
(2) 点$\textrm{Q}$の座標を$a$と$m$を用いて表せ。

以下、直線$l_2$が曲線$C$の接線となるときを考える。
(3) $a$を$m$を用いて表せ。
(4) 線分$\textrm{AQ}$の長さは$m$を用いて表される。これを$L(m)$とおく。
(a) $\displaystyle \lim_{m \rightarrow \infty}L(m)$を求めよ。
(b) $\displaystyle \lim_{m \rightarrow 0}mL(m)$を求めよ。
この動画を見る 

平方根と式の値

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$x+y=4$ , $xy=2$ , $x-y>0$
$\frac{\sqrt x - \sqrt y }{\sqrt x + \sqrt y } =?$

県立広島女子大学
この動画を見る 

大学入試問題#669「標準運転」 東京女子医科大学(2002) 定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#東京女子医科大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{1}^{e} \displaystyle \frac{(log\ x)^2}{x^3} dx$

出典:2002年東京女子医科大学 入試問題
この動画を見る 

福島大 基本対称式

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#式の計算(整式・展開・因数分解)#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#学校別大学入試過去問解説(数学)#数学(高校生)#福島大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
これを解け.
{$\begin{eqnarray}
\left\{
\begin{array}{l}
a+b+c=-4\\ab+bc+ca=7 \\
abc=10
\end{array}
\right.
\end{eqnarray}$

①$a^2+b^2+c^2$
②$\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}$
③$\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}$

2021福島大過去問
この動画を見る 
PAGE TOP