問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}}\ nを自然数とする。整数i,jに対し、xy平面上の点P_{i,j}の座標を\\
(\cos\frac{2\pi}{n}i+\cos\frac{2\pi}{n}j, \sin\frac{2\pi}{n}i+\sin\frac{2\pi}{n}j)\\
で与える。さらに、i,jを動かしたとき、P_{i,j}の取り得る異なる座標の\\
個数をS_nとする。このとき、以下の問いに答えよ。\\
(1)n=3のとき、\triangle P_{0,0}P_{0,1}P_{0,2}および\triangle P_{1,0}P_{1,1}P_{1,2}を同一平面上\\
に図示せよ。\\
(2)S_4を求めよ。\\
(3)平面上の異なる2点A,Bに対して、AQ=BQ=1であるような\\
同一平面上の点Qはいくつあるか。AB=dの値で場合分けして答えよ。\\
(4)S_nをnを用いて表せ。
\end{eqnarray}
2022東京医科歯科大学理系過去問
\begin{eqnarray}
{\Large\boxed{1}}\ nを自然数とする。整数i,jに対し、xy平面上の点P_{i,j}の座標を\\
(\cos\frac{2\pi}{n}i+\cos\frac{2\pi}{n}j, \sin\frac{2\pi}{n}i+\sin\frac{2\pi}{n}j)\\
で与える。さらに、i,jを動かしたとき、P_{i,j}の取り得る異なる座標の\\
個数をS_nとする。このとき、以下の問いに答えよ。\\
(1)n=3のとき、\triangle P_{0,0}P_{0,1}P_{0,2}および\triangle P_{1,0}P_{1,1}P_{1,2}を同一平面上\\
に図示せよ。\\
(2)S_4を求めよ。\\
(3)平面上の異なる2点A,Bに対して、AQ=BQ=1であるような\\
同一平面上の点Qはいくつあるか。AB=dの値で場合分けして答えよ。\\
(4)S_nをnを用いて表せ。
\end{eqnarray}
2022東京医科歯科大学理系過去問
単元:
#数A#数Ⅱ#大学入試過去問(数学)#場合の数と確率#平面上のベクトル#場合の数#三角関数#平面上のベクトルと内積#学校別大学入試過去問解説(数学)#数学(高校生)#数C#東京医科歯科大学
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}}\ nを自然数とする。整数i,jに対し、xy平面上の点P_{i,j}の座標を\\
(\cos\frac{2\pi}{n}i+\cos\frac{2\pi}{n}j, \sin\frac{2\pi}{n}i+\sin\frac{2\pi}{n}j)\\
で与える。さらに、i,jを動かしたとき、P_{i,j}の取り得る異なる座標の\\
個数をS_nとする。このとき、以下の問いに答えよ。\\
(1)n=3のとき、\triangle P_{0,0}P_{0,1}P_{0,2}および\triangle P_{1,0}P_{1,1}P_{1,2}を同一平面上\\
に図示せよ。\\
(2)S_4を求めよ。\\
(3)平面上の異なる2点A,Bに対して、AQ=BQ=1であるような\\
同一平面上の点Qはいくつあるか。AB=dの値で場合分けして答えよ。\\
(4)S_nをnを用いて表せ。
\end{eqnarray}
2022東京医科歯科大学理系過去問
\begin{eqnarray}
{\Large\boxed{1}}\ nを自然数とする。整数i,jに対し、xy平面上の点P_{i,j}の座標を\\
(\cos\frac{2\pi}{n}i+\cos\frac{2\pi}{n}j, \sin\frac{2\pi}{n}i+\sin\frac{2\pi}{n}j)\\
で与える。さらに、i,jを動かしたとき、P_{i,j}の取り得る異なる座標の\\
個数をS_nとする。このとき、以下の問いに答えよ。\\
(1)n=3のとき、\triangle P_{0,0}P_{0,1}P_{0,2}および\triangle P_{1,0}P_{1,1}P_{1,2}を同一平面上\\
に図示せよ。\\
(2)S_4を求めよ。\\
(3)平面上の異なる2点A,Bに対して、AQ=BQ=1であるような\\
同一平面上の点Qはいくつあるか。AB=dの値で場合分けして答えよ。\\
(4)S_nをnを用いて表せ。
\end{eqnarray}
2022東京医科歯科大学理系過去問
投稿日:2022.05.22