22.5° - 質問解決D.B.(データベース)

22.5°

問題文全文(内容文):
x:y=?
*図は動画内参照
単元: #数A#図形の性質#三角形の辺の比(内分・外分・二等分線)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
x:y=?
*図は動画内参照
投稿日:2023.12.02

<関連動画>

数学「大学入試良問集」【5−4 石の移動と確率】を宇宙一わかりやすく

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#岐阜大学#数学(高校生)
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
正三角形の頂点を反時計回りに$A,B,C$と名付け、ある頂点に1つの石が置いてある。
次のゲームを行う。
袋の中に黒玉3個、白玉2個の計5個の球が入っている。
この袋の中を水に2個の球を取り出して元に戻す。
この1回の試行で、もし黒玉2個の場合は反時計回りに、白玉2個の場合は時計回りに隣の頂点に石を動かす。
ただし、白玉1個と黒玉1個の場合には動かさない。
このとき、以下の問いに答えよ。
(1)
1回の試行で、黒玉2個を取り出す確率と、白玉2個を取り出す確率を求めよ。

(2)
最初に石を置いた頂点を$A$とする。
4回の試行を続けた後、石が頂点$C$にある確率を求めよ。
この動画を見る 

福田の数学〜上智大学2023年TEAP利用型理系第1問(1)〜ユークリッドの互除法

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#ユークリッド互除法と不定方程式・N進法#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large{\boxed{1}}$ (1)44311と43873との最大公約数は$\boxed{\ \ ア\ \ }$である。
この動画を見る 

場合の数 集合の基本~ベン図を描こう~【さこすけ's サイエンスがていねいに解説】

アイキャッチ画像
単元: #数A#場合の数と確率#場合の数#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
$U={1,2,3,4,5,6,7,8,9}$を全体集合とする。Uの部分集合A,Bについて、
$A∩B={2}$,(Aの補集合)$∩B={2,4,6,8}$,(Aの補集合)$∩$(Bの補集合)$={1,9}$であるとき、次の集合を求めよ。
(1)$A∪B$       (2)$B$        (3)$A∩$(Bの補集合)

U={$x\vert 1\leqq x\leqq 10$,xは整数}を全体集合とする。Uの部分集合
$A={1,2,3,4,8},B={3,4,5,6},C={2,3,6,7}$について、次の集合を求めよ。
(1)$A∩B∩C$ (2)$A∪B∪C$ (3)$A∩B∩$(Cの補集合) (4)(Aの補集合)$∩B∩$(Cの補集合) (5)($A∩B∩C$の補集合) (6)$(A∪C)∩$(Bの補集合)

$A={1,3,3a-2},B={-5,a+2,a^2-2a+1},A∩B={1,4}$のとき、
定数aの値と和集合$A∪B$を求めよ
この動画を見る 

素因数分解しろ! prime factorization

アイキャッチ画像
単元: #数Ⅰ#数A#数と式#式の計算(整式・展開・因数分解)#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$2581を素因数分解せよ。$
この動画を見る 

【共通テスト】数学IA 第5問図形の性質を解説してみました(2023年本試)【この動画だけ絶望的にわかりにくい】

アイキャッチ画像
単元: #数A#図形の性質#数学(高校生)
指導講師: カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
動画内手順1の(Step 1)と(Step 4)により、4点C,G,H,[ウ]は同一円周上にあることが分かる。
よって、$\angle CHG =$[エ]である。
一方、点Eは円Oの周上にあることから、[エ]=[オ]がわかる。
よって、$\angle CHG =$[オ]であるので、4点C,G,H,[カ]は同一円周上にある。
この円が点[ウ]を通ることにより、$\angle OEH =$[アイ]$^{ \circ }$を示すことができる。


[ウ]の解答群
⓪B
①D
②F
③O


[エ]の解答群
⓪$\angle AEC$
①$\angle CDF$
②$\angle CGH$
③$\angle CBO$
④$\angle FOG$


[オ]の解答群
⓪$\angle AED$
①$\angle ADE$
②$\angle BOE$
③$\angle DEG$
④$\angle EOH$


[カ]の解答群
⓪A
①D
②E
③F

-----------------
動画内手順2のとき、$\angle PTS =$[キ]である。
円Oの半径が$\sqrt{ 5 }$で、$OT=3 \sqrt{ 6 }$であったとすると、3点O,P,Rを通る円の半径は$\displaystyle \frac{[ク]\sqrt{ [ケ] }}{[コ]}$であり、RT=[サ]である。


[キ]の解答群
⓪$\angle PQS$
①$\angle PST$
②$\angle QPS$
③$\angle QRS$
④$\angle SRT$
この動画を見る 
PAGE TOP