【数C】中高一貫校問題集4 464:平面上のベクトル:ベクトル方程式:ベクトル方程式の復習① - 質問解決D.B.(データベース)

【数C】中高一貫校問題集4 464:平面上のベクトル:ベクトル方程式:ベクトル方程式の復習①

問題文全文(内容文):
△ABC(それぞれの位置ベクトルをa、b、cとする)。
この時、次の問いに答えよ。
(1)点Aから辺BCに下した垂線のベクトル方程式を求めよ。
チャプター:

0:00 問題紹介
0:30 ベクトル方程式の教科書の復習
10:30 解答解説

単元: #平面上のベクトル#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
教材: #TK数学#TK数学問題集4#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
△ABC(それぞれの位置ベクトルをa、b、cとする)。
この時、次の問いに答えよ。
(1)点Aから辺BCに下した垂線のベクトル方程式を求めよ。
投稿日:2023.06.15

<関連動画>

福田の数学〜九州大学2022年理系第5問の背景を考える〜内サイクロイド曲線(ハイポサイクロイド、アステロイド)の媒介変数表示

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#平面上の曲線#ベクトルと平面図形、ベクトル方程式#微分とその応用#微分法#学校別大学入試過去問解説(数学)#媒介変数表示と極座標#数学(高校生)#九州大学#数C#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
xy平面上の曲線Cを、媒介変数tを用いて次のように定める。
$x=5\cos t+\cos5t, y=5\sin t-\sin5t (-\pi \leqq t \lt \pi)$
以下の問いに答えよ。
(1)区間$0 \lt t \lt \frac{\pi}{6}$において、$\frac{dx}{dt} \lt 0, \frac{dy}{dx} \lt 0$であることを示せ。
(2)曲線Cの$0 \leqq t \leqq \frac{\pi}{6}$の部分、x軸、直線$y=\frac{1}{\sqrt3}x$で囲まれた
図形の面積を求めよ。
(3)曲線Cはx軸に関して対称であることを示せ。また、C上の点を
原点を中心として反時計回りに$\frac{\pi}{3}$だけ回転させた点はC上
にあることを示せ。
(4)曲線Cの概形を図示せよ。

2022九州大学理系過去問
この動画を見る 

鳥取大 空間 直線・平面の方程式 高校数学 Japanese university entrance exam questions

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#空間ベクトル#ベクトルと平面図形、ベクトル方程式#空間ベクトル#学校別大学入試過去問解説(数学)#数学(高校生)#鳥取大学#数C
指導講師: 鈴木貫太郎
問題文全文(内容文):
鳥取大学過去問題
$l_1:\frac{x-1}{2}=\frac{y-2}{-3}=z-4$
$l_2:\frac{x-2}{a^3}=\frac{y-3}{-b^2}=\frac{z-2}{b-1}$
$l_3:\frac{x-4}{-2a}=\frac{y-2}{b}=\frac{z-1}{a}$
A(1,2,4) B(2,3,2) C(4,2,1)
(1)A,B,Cを通る平面πの方程式
(2)$l_1$がπ上にある
(3)$l_2$,$l_3$がπ上にあるa,bの値
この動画を見る 

【数C】ベクトルの基本⑩三角形の面積の公式2パターン

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
教材: #チャート式#青チャートⅡ・B#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
ベクトルを用いた三角形の面積の公式
この動画を見る 

【数学】中高一貫校用問題集:平面上のベクトル:ベクトル方程式:ベクトル方程式の復習①

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
$△ABC$(それぞれの位置ベクトルを$a、b、c$とする)。
この時、次の問いに答えよ。
(1)点$A$から辺$BC$に下した垂線のベクトル方程式を求めよ。
※(2)は②の動画で説明
この動画を見る 

福田の数学〜北海道大学2023年文系第2問〜角の2等分線の位置ベクトル

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#平面上のベクトルと内積#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学#数C
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ 三角形OABは辺の長さがOA=3, OB=5, AB=7であるとする。また、$\angle$AOBの2等分線と直線ABとの交点をPとし、頂点Bにおける外角の2等分線と直線OPとの交点をQとする。
(1)$\overrightarrow{ OP }$を$\overrightarrow{ OA }$, $\overrightarrow{ OB }$を用いて表せ。また、|$\overrightarrow{ OP }$|の値を求めよ。
(2)$\overrightarrow{ OQ }$を$\overrightarrow{ OA }$, $\overrightarrow{ OB }$を用いて表せ。また、|$\overrightarrow{ OQ }$|の値を求めよ。

2023北海道大学文系過去問
この動画を見る 
PAGE TOP