【高校数学】 数Ⅱ-90 三角関数の性質① - 質問解決D.B.(データベース)

【高校数学】 数Ⅱ-90 三角関数の性質①

問題文全文(内容文):
◎$\sin \theta,\cos \theta, \tan \theta $のうち、1つが次のように与えられたとき、他の2つの値を求めよう。

①$\sin \theta=\displaystyle \frac{5}{13}(0\lt\theta\lt\displaystyle \frac{π}{2})$

②$\cos \theta=-\displaystyle \frac{2}{3}(π\lt\theta\lt\displaystyle \frac{3}{2}π)$
単元: #数Ⅱ#三角関数#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎$\sin \theta,\cos \theta, \tan \theta $のうち、1つが次のように与えられたとき、他の2つの値を求めよう。

①$\sin \theta=\displaystyle \frac{5}{13}(0\lt\theta\lt\displaystyle \frac{π}{2})$

②$\cos \theta=-\displaystyle \frac{2}{3}(π\lt\theta\lt\displaystyle \frac{3}{2}π)$
投稿日:2015.07.30

<関連動画>

福田の入試問題解説〜東京大学2022年理系第4問〜3次関数のグラフと直線の囲む2つの部分の面積

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#指数関数#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
座標平面上の曲線
$C:y=x^3-x$
を考える。
(1)座標平面上の全ての点Pが次の条件$(\textrm{i})$を満たすことを示せ。
$(\textrm{i})$点Pを通る直線lで、曲線Cと相異なる3点で交わるものが存在する。
(2)次の条件$(\textrm{ii})$を満たす点Pのとりうる範囲を座標平面上に図示せよ。
$(\textrm{ii})$点Pを通る直線lで、曲線Cと相異なる3点で交わり、かつ、直線lと
曲線Cで囲まれた2つの部分の面積が等しくなるものが存在する。

2022東京大学理系過去問
この動画を見る 

【短時間でポイントチェック!!】定積分の基礎〔現役講師解説、数学〕

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#不定積分・定積分#数学(高校生)
指導講師: 3rd School
問題文全文(内容文):
$\int_{-1}^2(x^2-6x+1)dx$
この動画を見る 

#電気通信大学2024#極限_72

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#平均変化率・極限・導関数#学校別大学入試過去問解説(数学)#数学(高校生)#電気通信大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \lim_{n\to\infty} \displaystyle \sum_{k=1}^{n} \dfrac{n}{n^2+3k^2}$を解け.

電気通信大学過去問題
この動画を見る 

高校2年生から京大に挑戦!積分習いたての人にも解ける問題【京都大学】【数学 入試問題】

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#不定積分・定積分#京都大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
2x, 5-x, 2のうち最小の数をf(x)とし、g(x)=xf(x)とおく。y=g(x)とx軸で囲まれた部分の面積は?
この動画を見る 

東京都立大 複素数

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#複素数#学校別大学入試過去問解説(数学)#数学(高校生)#東京都立大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$(\displaystyle \frac{\sqrt{ 3 }+i}{1+\sqrt{ 3 }i})^{10}=a_1+a_2i$

$(\displaystyle \frac{\sqrt{ 3 }-i}{1-\sqrt{ 3 }i})^{10}=b_1+b_2i$

(1)
$a_1,a_2,b_1,b_2$を求めよ

(2)
$A(a_1,a_2)$ $B(b_1,b_2)$
$\triangle OAB$の面積を求めよ

出典:2001年東京都立大学 過去問
この動画を見る 
PAGE TOP