【高校数学】 数Ⅱ-90 三角関数の性質① - 質問解決D.B.(データベース)

【高校数学】 数Ⅱ-90 三角関数の性質①

問題文全文(内容文):
◎$\sin \theta,\cos \theta, \tan \theta $のうち、1つが次のように与えられたとき、他の2つの値を求めよう。

①$\sin \theta=\displaystyle \frac{5}{13}(0\lt\theta\lt\displaystyle \frac{π}{2})$

②$\cos \theta=-\displaystyle \frac{2}{3}(π\lt\theta\lt\displaystyle \frac{3}{2}π)$
単元: #数Ⅱ#三角関数#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎$\sin \theta,\cos \theta, \tan \theta $のうち、1つが次のように与えられたとき、他の2つの値を求めよう。

①$\sin \theta=\displaystyle \frac{5}{13}(0\lt\theta\lt\displaystyle \frac{π}{2})$

②$\cos \theta=-\displaystyle \frac{2}{3}(π\lt\theta\lt\displaystyle \frac{3}{2}π)$
投稿日:2015.07.30

<関連動画>

福田の1.5倍速演習〜合格する重要問題014〜東京大学2016年度理系数学第1問〜eの定義と不等式の証明

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#恒等式・等式・不等式の証明#平均変化率・極限・導関数#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
eを自然対数の底、すなわち$e=\lim_{t \to \infty}\left(1+\frac{1}{t}\right)^t$とする。
すべての正の実数xに対し、次の不等式が成り立つことを示せ。
$\left(1+\frac{1}{x}\right)^x \lt e \lt \left(1+\frac{1}{x}\right)^{x+\frac{1}{2}}$

2016東京大学理系過去問
この動画を見る 

毎日積分~積分47都道府県制覇への道~ #Shorts #毎日積分 #高校数学

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#不定積分・定積分#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
毎日積分~積分47都道府県制覇への道
この動画を見る 

福田のわかった数学〜高校2年生036〜軌跡(3)反転の話その1

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#軌跡と領域#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{II} 軌跡(3) 反転の話(1)\\
座標平面上で、点P(4,3)に対して\\
OP・OQ=1\\
となる点Qを半直線OP上にとる。\\
点Qの座標を求めよ。
\end{eqnarray}
この動画を見る 

【数Ⅱ】式と証明:相加相乗平均その3

アイキャッチ画像
単元: #数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
$a\gt 0$のとき $\dfrac{a}{a^2+4}$の最小値を求めよ。
この動画を見る 

東北大 積分

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#不定積分・定積分#数学(高校生)#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
$f(x)=x^3-6ax^2+bx+1$
$x=a(a \gt 0)$で極大値
$f(x)$と直線$y=f(a)$で囲まれた面積が$a^2$
$a$の値を求めよ

出典:1996年東北大学 過去問
この動画を見る 
PAGE TOP