【普通の解き方?それじゃあ…!】連立方程式:法政大学高等学校~全国入試問題解法 - 質問解決D.B.(データベース)

【普通の解き方?それじゃあ…!】連立方程式:法政大学高等学校~全国入試問題解法

問題文全文(内容文):
連立方程式$\begin{eqnarray}
\left\{
\begin{array}{l}
ax+y=2 \\
8x-3y=a
\end{array}
\right.
\end{eqnarray}$
の解が$x=2,y=b$であるとき,$a$と$b$の値を求めなさい.

法政大高校過去問
単元: #数学(中学生)#中2数学#連立方程式#高校入試過去問(数学)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
連立方程式$\begin{eqnarray}
\left\{
\begin{array}{l}
ax+y=2 \\
8x-3y=a
\end{array}
\right.
\end{eqnarray}$
の解が$x=2,y=b$であるとき,$a$と$b$の値を求めなさい.

法政大高校過去問
投稿日:2022.08.27

<関連動画>

【中学数学】分数の連立方程式~色んな解き方を紹介します~ 2-5.5【中2数学】

アイキャッチ画像
単元: #数学(中学生)#中2数学#連立方程式
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
$\displaystyle
\begin{eqnarray}
\left\{
\begin{array}{l}
\frac{5}{2}x -\frac{3}{2} y = \frac{9}{2} \\
\frac{3}{4}x + \frac{9}{2}y = 3
\end{array}
\right.
\end{eqnarray}$
この動画を見る 

【本当に解はあるのか!?】整数:日本大学習志野高等学校~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#中2数学#式の計算(単項式・多項式・式の四則計算)#連立方程式#高校入試過去問(数学)#日本大学習志野高等学校
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
3つの自然数$ x,y,z(x \lt y \lt z)$である.
$ x+y+z=20 $
$ xyz=60 $  満たす.

このとき, $ x=\Box,y=\Box,z=\Box $

日大習志野高校過去問
この動画を見る 

【数学】中2-37 一次関数の交点をだす② 応用編

アイキャッチ画像
単元: #数学(中学生)#中2数学#1次関数
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎右の図のように、直線ℓはA(0,6)とB(3,0)を通り、
直線mは傾きが$\displaystyle \frac{1}{2}$で、(-3,2)を通る。
※図は動画内参照

①直線ℓの式は?

②直線mの式は?

③Pの座標は?

④$\triangle PBC$の面積は?
この動画を見る 

【裏技】一瞬で答え出る...

アイキャッチ画像
単元: #数学(中学生)#中2数学#三角形と四角形
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
角の二等分線と内角・外角 裏技紹介動画です
この動画を見る 

【高校受験対策/数学】死守-97

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#中3数学#正の数・負の数#方程式#式の計算(単項式・多項式・式の四則計算)#連立方程式#式の計算(展開、因数分解)#平方根#2次方程式#空間図形#相似な図形#円#文字と式#平面図形#三角形と四角形
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守97

①$5-(-7)$を計算しなさい。
➁$\sqrt{ 27 }+\sqrt{ 12 }$を計算しなさい。
③$(\sqrt{ 2 }-1)^2$を計算しなさい。

④連立方程式を解きなさい。
$2x-3y=-4$
$x+2y=5$

⑤二次方程式$3x^2+7x+1=0$を解きなさい。

⑥相似な2つの立体$F,G$がある。
$F$と$G$の相似比が$3:5$であり、$F$の体積が$81\pi$$cm^3$のとき、$G$の体積を求めなさい。

⑦右の図のように、4点$A,B,C,D$が線分$BC$を直径とする 同じ円周上にあるとき、
$\angle ADB$の大きさを求めなさい。

⑧右下の図のような線分$OA$がある。
$\angle AOB=30°,OA=OB$となる二等辺三角形$OAB$を作図しなさい。
また点$B$の位置を示す文字$B$も図の中に書き入れなさい。
ただし、作図には定規とコンパスを用い、作図に用いた線は消えずに残しておくこと。
この動画を見る 
PAGE TOP