【普通の解き方?それじゃあ…!】連立方程式:法政大学高等学校~全国入試問題解法 - 質問解決D.B.(データベース)

【普通の解き方?それじゃあ…!】連立方程式:法政大学高等学校~全国入試問題解法

問題文全文(内容文):
連立方程式$\begin{eqnarray}
\left\{
\begin{array}{l}
ax+y=2 \\
8x-3y=a
\end{array}
\right.
\end{eqnarray}$
の解が$x=2,y=b$であるとき,$a$と$b$の値を求めなさい.

法政大高校過去問
単元: #数学(中学生)#中2数学#連立方程式#高校入試過去問(数学)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
連立方程式$\begin{eqnarray}
\left\{
\begin{array}{l}
ax+y=2 \\
8x-3y=a
\end{array}
\right.
\end{eqnarray}$
の解が$x=2,y=b$であるとき,$a$と$b$の値を求めなさい.

法政大高校過去問
投稿日:2022.08.27

<関連動画>

中2数学「式による説明①(偶数と奇数)」【毎日配信】

アイキャッチ画像
単元: #数学(中学生)#中2数学#式の計算(単項式・多項式・式の四則計算)
指導講師: 中学受験算数・高校受験数学けいたくチャンネル
問題文全文(内容文):
中2~第10回式による説明①~(偶数と奇数)

例1
偶数と奇数の和は奇数になることを説明しなさい。

例2
奇数と奇数の和は偶数になることを説明しなさい。

例3
偶数と奇数の積は偶数になることを説明しなさい。
この動画を見る 

【中学数学】連立方程式の文章題基礎~受験問題で演習~ 2-3【中2数学】

アイキャッチ画像
単元: #数学(中学生)#中2数学#連立方程式
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
1⃣
ある店では、チョコレート1個54円、あめが1個81円で売られている。
また、1個の重さは、チョコレートが20g、あめが12gである。
このチョコレートとあめをそれぞれ何個か買ったところ、代金は全部で432円、
全体の重さは124gであった。
チョコレートとあめをそれぞれ何個買ったか求めよ。

2⃣
ある中学校でボランティア活動に参加したことがある生徒は、1年生では1年生
全体の25%、2年生では2年生全体の30%、3年生では3年生全体の40%で、学校全体
では生徒全体の32%である。
また、この中学校の生徒数は、3年生は2年生より15人多く、1年生は240人である。
この中学校の2年生と3年生の生徒数を求めよ。

3⃣
2けたの自然数がある。
この自然数の十の位の数と一の位の数の和は、一の位の数の4倍よりも8小さい。
また、十の位の数と一の位の数を入れかえてできる2けたの自然数と、もとの
自然数との和は132である。もとの自然数を求めよ。
この動画を見る 

斜めの正方形 B 風車

アイキャッチ画像
単元: #数学(中学生)#中2数学#三角形と四角形#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
ADBCは正方形
点Cと点Dの座標は?
*図は動画内参照

専修大学松戸高等学校

この動画を見る 

2023高校入試解説2問目 文字でおけ! 早稲田佐賀

アイキャッチ画像
単元: #数学(中学生)#中2数学#式の計算(単項式・多項式・式の四則計算)#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
$2023 \times 108 -2022 \times 110 +4046 -54$

2023早稲田佐賀高等学校
この動画を見る 

中2数学「同類項・式の加法と減法」【毎日配信】

アイキャッチ画像
単元: #数学(中学生)#中2数学#式の計算(単項式・多項式・式の四則計算)
指導講師: 中学受験算数・高校受験数学けいたくチャンネル
問題文全文(内容文):
例1
次の計算をしなさい.

(1)$4a-3b-a+5b$
(2)$x^2-3x+2x^2+5x$
(3)$3ab-2a-ab+a$
(4)$\dfrac{x}{6}+\dfrac{y}{3}+\dfrac{y}{4}-\dfrac{x}{9}$

例2
(1)$(4x-y)+(x+5y)$
(2)$(3x+7y)-(2x-5y)$
(3)$(2x^2+5x-1)-(3-4x^2+x)$
(4)
$\begin{array}{r}
3x-2y \\[0.5pt]
\underline{+\phantom{0}2x+5y}\\[-3pt]
\\[-3pt]
\end{array}$

(5)
$\begin{array}{r}
-2x+5y-4 \\[0.5pt]
\underline{-\phantom{0}-5x-3y+6}\\[-3pt]
\\[-3pt]
\end{array}$
この動画を見る 
PAGE TOP