【ケントウする点は…!】連立方程式:大阪星光学院高等学校~全国入試問題解法 - 質問解決D.B.(データベース)

【ケントウする点は…!】連立方程式:大阪星光学院高等学校~全国入試問題解法

問題文全文(内容文):
$ x,y $の連立方程式であり,$ a,b $は正の数である.
$\begin{eqnarray}
\left\{
\begin{array}{l}
ax-y=4 \\
x+by=7
\end{array}
\right.
\end{eqnarray}$
の解を$ a $と$ b $を用いて表すと$ x=\Box,y=\Box $である.

大阪星光学院高校過去問

$ x,y $の連立方程式であり,$ a,b $は正の数である.
単元: #数学(中学生)#中2数学#連立方程式
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$ x,y $の連立方程式であり,$ a,b $は正の数である.
$\begin{eqnarray}
\left\{
\begin{array}{l}
ax-y=4 \\
x+by=7
\end{array}
\right.
\end{eqnarray}$
の解を$ a $と$ b $を用いて表すと$ x=\Box,y=\Box $である.

大阪星光学院高校過去問

$ x,y $の連立方程式であり,$ a,b $は正の数である.
投稿日:2023.12.08

<関連動画>

【中学数学】連立方程式の文章題の解き方【中2夏期講習③】

アイキャッチ画像
単元: #数学(中学生)#中2数学#連立方程式
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
(1)ある動物園の入館料は大人2人と中学生3人では3100円、大人1人と中学生4人では2800円である。大人1人と中学生1人の入館料をそれぞれ求めよ。
(2)大小2つの整数がある。大きい方の整数は小さい方の整数の4倍より2小さく、大きい方の整数の2倍から小さい方の整数の7倍を引くと1になるという。このような2つの整数を求めよ。
(3)A君の家から学校へ行く途中に公園がある。A君が家から公園まで毎分80 m、公園から家まで毎分60 mで歩くと16分かかる。妹が家から公園まで毎分60 m、公園から学校まで毎分40 mで歩くと23分かかる。家から公園までと公園から家までの道のりを求めよ。
(4)2桁の整数がある。この整数の10の位の数と1の位の数の和は8になる。また、この数の10の位と1の位を入れ替えてできる整数はもとの整数よりも36大きくなる。もとの2けたの整数を求めよ。
この動画を見る 

【中1 P.128】4編の力だめし

アイキャッチ画像
単元: #数学(中学生)#中2数学#中3数学#1次関数#2次関数
指導講師: とある男が授業をしてみた
問題文全文(内容文):
【中1 P.128】4編の力だめし解説していきます.
この動画を見る 

【受験対策】  数学-図形①

アイキャッチ画像
単元: #数学(中学生)#中2数学#中3数学#平行と合同#相似な図形
指導講師: とある男が授業をしてみた
問題文全文(内容文):
右の図のように、長方形ABCDの辺CD上に点Eをとり、頂点B、DからAEにそれぞれ垂線BF、DGをひきます。
また、DFの延長と辺ABとの交点をHとします。

①$AB=AD,BF12cm$、$DG=4cm$のとき、四角形BFDGの面積は?

②$\angle ABF=\angle FDG、\angle AHF=\angle DFG$のとき、
$AG:AE$を、最も簡単な整数の比で表そう。
※図は動画内参照
この動画を見る 

【比の計算ならば…!】連立方程式:広島大学附属高等学校~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#中2数学#連立方程式#高校入試過去問(数学)#広島大学附属高等学校
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$\begin{eqnarray}
\left\{
\begin{array}{l}
2x:(2y+13)=3:1\\
5x+6y=3
\end{array}
\right.
\end{eqnarray}$

広大附属高校過去問
この動画を見る 

【中2数学/期末テスト対策】連立方程式の解き方

アイキャッチ画像
単元: #数学(中学生)#中2数学#連立方程式
指導講師: 【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
(1)
$\begin{eqnarray}
\left\{
\begin{array}{l}
y=2x-7 \\
3x-2y=8
\end{array}
\right.
\end{eqnarray}$

(2)
$\begin{eqnarray}
\left\{
\begin{array}{l}
x+y=6 \\
3x-y=-14
\end{array}
\right.
\end{eqnarray}$

(3)
$\begin{eqnarray}
\left\{
\begin{array}{l}
5x-y=11 \\
3x+2y=4
\end{array}
\right.
\end{eqnarray}$
この動画を見る 
PAGE TOP