【総まとめ/数学Ⅰ】二次方程式・二次関数・二次不等式 - 質問解決D.B.(データベース)

【総まとめ/数学Ⅰ】二次方程式・二次関数・二次不等式

問題文全文(内容文):
【総まとめ/数学Ⅰ】二次方程式・二次関数・二次不等式
-----------------
$y=x^2+4x+1$

$y=-(x-2)(x+3)$

$x^2+7x+6 \leqq 0$

$-x \gt 5$

$-x \geqq \displaystyle \frac{3}{2}$

$-x^2+2x+4 \leqq 0$
単元: #数Ⅰ#2次関数#数学(高校生)
指導講師: カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
【総まとめ/数学Ⅰ】二次方程式・二次関数・二次不等式
-----------------
$y=x^2+4x+1$

$y=-(x-2)(x+3)$

$x^2+7x+6 \leqq 0$

$-x \gt 5$

$-x \geqq \displaystyle \frac{3}{2}$

$-x^2+2x+4 \leqq 0$
投稿日:2020.07.21

<関連動画>

滋賀大 整式の累乗の微分 公式証明 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#式の計算(整式・展開・因数分解)#微分とその応用#微分法#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#滋賀大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
'84滋賀大学過去問題
$\frac{d}{dx} \{ f(x) \}^n=n \{ f(x) \}^{n-1}f'(x)$を証明せよ。
(f(x)は0でないxの整式、n自然数)
この動画を見る 

大学入試の因数分解  北海道薬科大

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#式の計算(整式・展開・因数分解)#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
因数分解せよ
$x^2y^2+x^2y+xy^2-x-y-1$

北海道薬科大学
この動画を見る 

複素数 基礎から

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#数と式#複素数と方程式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#複素数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
これを計算せよ.

$\left(\dfrac{\sqrt3-i}{\sqrt2+\sqrt2 i}\right)^{100}$
この動画を見る 

【数Ⅰ】【2次関数】関数の場合分け ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#2次関数#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の関数のグラフをかけ。
(1) y=-x+2 (x<2) , y=x-2 (x≧2)
(2) y=1 (x<0) , y=x+1 (x≧0)
(3) y=x² (x<0) , y=x (0≦x<1) , y=-x²+2x (1≦x)
この動画を見る 

【数A】【数と式】二重根号を外した形を求めよ(1) √(5+√24) (2) √(11+4√6)(3) √(12-8√2)

アイキャッチ画像
単元: #数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#数と式#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
二重根号を外した形を求めよ
(1) $\sqrt{5+\sqrt{24}} $
(2) $\sqrt{11+4\sqrt{6}} $
(3) $\sqrt{12-8\sqrt{2}} $
この動画を見る 
PAGE TOP