【総まとめ/数学Ⅰ】二次方程式・二次関数・二次不等式 - 質問解決D.B.(データベース)

【総まとめ/数学Ⅰ】二次方程式・二次関数・二次不等式

問題文全文(内容文):
【総まとめ/数学Ⅰ】二次方程式・二次関数・二次不等式
-----------------
$y=x^2+4x+1$

$y=-(x-2)(x+3)$

$x^2+7x+6 \leqq 0$

$-x \gt 5$

$-x \geqq \displaystyle \frac{3}{2}$

$-x^2+2x+4 \leqq 0$
単元: #数Ⅰ#2次関数#数学(高校生)
指導講師: カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
【総まとめ/数学Ⅰ】二次方程式・二次関数・二次不等式
-----------------
$y=x^2+4x+1$

$y=-(x-2)(x+3)$

$x^2+7x+6 \leqq 0$

$-x \gt 5$

$-x \geqq \displaystyle \frac{3}{2}$

$-x^2+2x+4 \leqq 0$
投稿日:2020.07.21

<関連動画>

平方根と式の値 大阪星光学院最初の一問 2024

アイキャッチ画像
単元: #数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$x=1+\sqrt 2 + \sqrt 3 + \sqrt 5$のとき
$x^2-2x+5$の値は?
大阪星光学院2024
この動画を見る 

福田の数学〜慶應義塾大学2021年医学部第1問(3)〜集合の要素の個数と2次方程式の解

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#2次関数#複素数と方程式#集合と命題(集合・命題と条件・背理法)#2次方程式と2次不等式#複素数#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ 
(3)整数$k$に対して、$x$の2次方程式$x^2+kx+k+35=0$の解を$\alpha_k,\beta_k$とおく。
ただし、方程式が重解をもつときは$\alpha_k=\beta_k$である。また$U=\left\{k|kは整数、かつ|k| \leqq 100 \right\}$を全体集合とし、その部分集合$A=\{k|k \in U$かつ$\alpha_k,\beta_k$はともに実数で$\alpha_k\neq \beta_k\}$
$B=\{k|k \in U$かつ$\alpha_k,\beta_k$の実数はともに2より大きい$\}$
$C=\{k|k \in U$かつ$\alpha_k,\beta_k$の実部と虚部はすべて整数$\}$
を考える。このとき$n(A)=\boxed{\ \ (か)\ \ },$$n(A \cap B)=\boxed{\ \ (き)\ \ },$$n(\bar{ A } \cap B)=\boxed{\ \ (く)\ \ },$
$n(A \cap C)=\boxed{\ \ (け)\ \ },$$n(\bar{ A } \cap C)=\boxed{\ \ (こ)\ \ }$である。ただし有限集合$X$に対してその要素の個数を$n(X)$で表す。また$\bar{ A }$は$A$の補集合である。

2021慶應義塾大学医学部過去問
この動画を見る 

データの分析 平均点からデータを求める【ユースケ・マセマティックがていねいに解説】

アイキャッチ画像
単元: #数Ⅰ#データの分析#データの分析#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
次のデータは、ある体操競技会に参加した10人のある種目の得点である。
13.2 13.0 13.7 12.5 14.6 12.3 12.5 11.9 13.9 a (単位は点)
このデータの平均値が13.1点であるとき、aの値を求めよ。
この動画を見る 

中学生はよく間違えます。ルートを外せ!仙台育英(宮城県)

アイキャッチ画像
単元: #数Ⅰ#数A#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$\sqrt{17-a}$の値が整数となる自然数aは何個?
仙台育英学園高等学校
この動画を見る 

福田の数学〜慶應義塾大学2021年環境情報学部第4問〜条件を満たす部分集合の個数

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#集合と命題(集合・命題と条件・背理法)#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\scriptsize$ ${\Large\boxed{4}}$ $A_n=\left\{1,2,\ldots,n\right\}$を、$1$から$n$までの自然数の集合とする。$S$を$A_n$の部分集合(空集合および$A_n$自身も含む)としたとき、$S'$を$S$の要素それぞれに$1$を加えてできた集合とする。また$S''$を$S'$の要素それぞれにさらに$1$を加えてできた集合とする。たとえば、$A_3=\left\{1,2,3\right\}$の部分集合$S=\left\{1,3\right\}$の場合、$S'=\left\{2,4\right\},S''=\left\{3,5\right\}$
$(1)A_4=\left\{1,2,3,4\right\}$の部分集合$S=\left\{1,2,3\right\}$は$S \cup S'=A_4$となる。このように$A_4$の部分集合で$S \cup S'=A_4$となるものは$\left\{1,2,3\right\}$と$\left\{1,\boxed{\ \ ア\ \ }\right\}$の$2つ$である。
$(2)$$A_n$の$部分集合S$で$S \cup S'=A_n$となるような$S$の個数を$a_n$とすると、$(1)$から分かるように$a_4=2$であり$a_5=\boxed{\ \ イウ\ \ },$ $a_6=\boxed{\ \ エオ\ \ },$$a_7=\boxed{\ \ カキ\ \ },$$a_8=\boxed{\ \ クケ\ \ },$$\ldots,a_{16}=\boxed{\ \ コサシ\ \ }$となる。
$(3)$$A_4=\left\{1,2,3,4\right\}$の$部分集合S$で$S\cup S''=A_4$となるものは$S=\left\{1,\boxed{\ \ ス\ \ }\right\}$だけである。
$(4)A_n$の$部分集合S$で$S \cup S''=A_n$となるような$S$の個数を$b_n$とすると、$(3)$から分かるように$b_4=1$であり$ b_5=\boxed{\ \ セソ\ \ },$$b_6=\boxed{\ \ タチ\ \ },$$b_7=\boxed{\ \ ツテ\ \ },$$b_8=\boxed{\ \ トナ\ \ },$$\ldots,b_{16}=\boxed{\ \ ニヌネ\ \ }$となる。
2021慶應義塾大学環境情報学部過去問
この動画を見る 
PAGE TOP