問題文全文(内容文):
2曲線$y=\sqrt{ x },\ y=a\ log\ x$、が1点のみを共有するように正の数$a$を定め、このとき2曲線と$x$軸で囲まれる面積を求めよ。
ただし、必要なら$\displaystyle \lim_{ x \to \infty }\displaystyle \frac{log\ x}{x}=0$は用いてよい。
2曲線$y=\sqrt{ x },\ y=a\ log\ x$、が1点のみを共有するように正の数$a$を定め、このとき2曲線と$x$軸で囲まれる面積を求めよ。
ただし、必要なら$\displaystyle \lim_{ x \to \infty }\displaystyle \frac{log\ x}{x}=0$は用いてよい。
単元:
#大学入試過去問(数学)#積分とその応用#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#数学(高校生)#群馬大学#数Ⅲ
指導講師:
ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
2曲線$y=\sqrt{ x },\ y=a\ log\ x$、が1点のみを共有するように正の数$a$を定め、このとき2曲線と$x$軸で囲まれる面積を求めよ。
ただし、必要なら$\displaystyle \lim_{ x \to \infty }\displaystyle \frac{log\ x}{x}=0$は用いてよい。
2曲線$y=\sqrt{ x },\ y=a\ log\ x$、が1点のみを共有するように正の数$a$を定め、このとき2曲線と$x$軸で囲まれる面積を求めよ。
ただし、必要なら$\displaystyle \lim_{ x \to \infty }\displaystyle \frac{log\ x}{x}=0$は用いてよい。
投稿日:2021.08.07