公式に頼らず因数分解を解く15秒~全国入試問題解法 #shorts #mathematics #examination #factorization - 質問解決D.B.(データベース)

公式に頼らず因数分解を解く15秒~全国入試問題解法 #shorts #mathematics #examination #factorization

問題文全文(内容文):
$ ab-3a-2b+6 $を因数分解しなさい.

専修大付属高校過去問
単元: #数学(中学生)#中3数学#式の計算(展開、因数分解)#高校入試過去問(数学)#専修大学附属高等学校
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$ ab-3a-2b+6 $を因数分解しなさい.

専修大付属高校過去問
投稿日:2023.09.09

<関連動画>

【高校受験対策】数学-死守36

アイキャッチ画像
単元: #数学(中学生)#中2数学#中3数学#式の計算(単項式・多項式・式の四則計算)#式の計算(展開、因数分解)#平方根
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守36

①$5+4 \times 6$を計算せよ

②$\frac{9}{5}\div 0.8-\frac{1}{2}$を計算せよ

③$\sqrt{60}\div \sqrt{5}+\sqrt{27}$を計算せよ

④比例式$3:4=(x-6):8$について$x$の値を求めよ。

⑤$3x^2+9x-12$を因数分解せよ。

⑥$n$を50以下の正の整数とするとき、$\sqrt{5n}$の値が整数となるような$n$の値をすべて求めよ。

⑦次の口と△にどんな自然数を入れても、計算の結果がつねに自然数 になるものはどれか。
下のア~エの中からあてはまるものをすべて答えよ。

ア 口+△
イ 口-△
ウ 口×△
エ 口÷△

⑧大小2つのさいころを同時に投げる。
大きいさいころの出た目の数を$x$座標、小さいさいころの出た目の数を$y$座標とする点を$P(x,y)$とするとき、点$P$が1次関数$y=-x+8$のグラフ上の点となる確率を求めよ。

⑨右の図は半径$rcm$の球を切断して できた半球で、切断面の円周の長さは$4\pi cm$であった。
このとき$r$の値を求めよ。
また、この半球の体積は何$cm^3$か。 ただし$\pi$は円周率とする。
この動画を見る 

代入するの? 四天王寺高校

アイキャッチ画像
単元: #数学(中学生)#中3数学#式の計算(展開、因数分解)#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
$x= \frac{1-3 \sqrt 5}{2}$
$x^2-x+1 =?$

四天王寺高等学校
この動画を見る 

√2✖️整数=整数??

アイキャッチ画像
単元: #数学(中学生)#中3数学#式の計算(展開、因数分解)#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
$\sqrt 2(a+b+1) = a-b-5$(a,bは整数)
a=? b=?

巣鴨高等学校
この動画を見る 

【高校受験対策/数学】死守-92

アイキャッチ画像
単元: #数学(中学生)#中1数学#正の数・負の数#式の計算(展開、因数分解)#平方根#2次方程式#1次関数#平面図形#標本調査
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守92

①$12÷(-4)$を計算しなさい。

②$\sqrt{3}×\sqrt{8}$を計算しなさい。

③$(x-4)(x-5)$を展開しなさい。

④二次方程式$x^2-5x+3=0$を解きなさい。

⑤$\frac{336}{n}$の値が、ある自然数の2乗となるような自然数$n$のうち、
最も小さいものを求めなさい。

⑥右の表は、ある中学校の生徒30人が1か月に読んだ本の冊数を調べて、度数分布表に整理 したものである。
ただし、一部が汚れて度数が見えなくなっている。
この度数分布表について、3冊以上6冊未満の階級の相対度数を求めなさい。

⑦右の図のように、五角形$ABCDE$があり、$\angle BCD=105°,$$\angle CDE=110°$である。
また、頂点$A,E$における外角$B$の大きさがそれぞれ$70°,80°$であるとき、
$\angle ABC$の大きさを求めなさい。

⑧二次関数$y=\frac{5}{2}x+a$のグラフは点$(4,3)$を通る。
このグラフと$y$軸との交点の座標を求めなさい。
この動画を見る 

999 マークシートです  B

アイキャッチ画像
単元: #数学(中学生)#中3数学#式の計算(展開、因数分解)#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
$999^2-1+999^2+4 \times 999 +3 = ▢ \times 10^▢$

日本大学櫻丘高等学校
この動画を見る 
PAGE TOP