部分分数分解 - 質問解決D.B.(データベース)

部分分数分解

問題文全文(内容文):
$\frac{1}{2} + \frac{1}{6} + \frac{1}{12} +\frac{1}{20}$
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$\frac{1}{2} + \frac{1}{6} + \frac{1}{12} +\frac{1}{20}$
投稿日:2023.06.01

<関連動画>

【高校数学】気持ちいい計算問題!ずばずば消えて残るのはたったのこれだけ!? #Shorts

アイキャッチ画像
単元: #数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$\displaystyle \frac{\sqrt{2}-\sqrt{1}}{\sqrt[4]{2}+\sqrt[4]{1}}$+$\displaystyle \frac{\sqrt{3}-\sqrt{2}}{\sqrt[4]{3}+\sqrt[4]{2}}$+・・・・・・+$\displaystyle \frac{\sqrt{20}-\sqrt{19}}{\sqrt[4]{20}+\sqrt[4]{19}}$
気持ちよい計算問題です。
この動画を見る 

福田の数学〜上智大学2022年理工学部第1問(1)〜集合と論理

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#集合と命題(集合・命題と条件・背理法)#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
(1)x,yを実数とする。次の条件を考える。
$p:xy$が無理数である.
$q:x,y$がともに無理数である.
$r:x,y$の少なくとも一方が無理数である.
$(\textrm{i})$以下から真の命題をすべて選べ。
$(\textrm{a})p \Rightarrow q\ \ \ (\textrm{b})p \Rightarrow r\ \ \ (\textrm{c})q \Rightarrow p\ \ \ (\textrm{d})q \Rightarrow r\ \ \ (\textrm{e})r \Rightarrow p\ \ \ (\textrm{f})r \Rightarrow q\ \ \ \\
(\textrm{ii})x,y$が命題「$p \Rightarrow q$」の判例であるための必要十分条件を、すべて選べ。
$(\textrm{a})$「$xy$が無理数」かつ「x,yが共に有理数」である。
$(\textrm{b})$「$xy$が有理数」かつ「x,yが共に有理数」である。
$(\textrm{c})$「$xy$が有理数」かつ「xが有理数、または、yが有理数」である。
$(\textrm{d})$「$xy$が無理数」かつ「xが有理数、または、yが有理数」である。
$(\textrm{e})$「$xy$が無理数、かつxが有理数」または「xyが無理数、かつ、yが有
理数」である。
$(\textrm{f})$「$xy$が無理数、かつxが有理数」または「xyが有理数、かつ、yが有
理数」である。

2022上智大学理工学部過去問
この動画を見る 

解けそうで解けない三角形の面積 城北

アイキャッチ画像
単元: #数学(中学生)#数Ⅰ#図形と計量#三角比への応用(正弦・余弦・面積)#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
△OAB=?
*図は動画内参照

城北高等学校
この動画を見る 

連立2元4次方程式

アイキャッチ画像
単元: #連立方程式#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ \begin{eqnarray}
\left\{
\begin{array}{l}
x^4+x^2y^2+y^4=63 \\
x^2+xy+y^2=9
\end{array}
\right.
\end{eqnarray}$
これを解け.
この動画を見る 

等式の変形 西大和学園

アイキャッチ画像
単元: #数学(中学生)#数Ⅰ#数と式#一次不等式(不等式・絶対値のある方程式・不等式)#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
aについて解け
$\frac{1}{a}+\frac{2}{b} = \frac{1}{ca}$

2022西大和学園高等学校
この動画を見る 
PAGE TOP