【高校数学】 数Ⅰ-91 正弦定理と余弦定理④ - 質問解決D.B.(データベース)

【高校数学】  数Ⅰ-91  正弦定理と余弦定理④

問題文全文(内容文):
◎△ABCの辺BCの中点をM、線分BMの中点をDとする。
a=8,b=4,C=6のとき、次のものを求めよう。

①$\cos B$の値
②$AM$の長さ
③$AD$の長さ
※図は動画内参照
単元: #数Ⅰ#図形と計量#三角比への応用(正弦・余弦・面積)#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎△ABCの辺BCの中点をM、線分BMの中点をDとする。
a=8,b=4,C=6のとき、次のものを求めよう。

①$\cos B$の値
②$AM$の長さ
③$AD$の長さ
※図は動画内参照
投稿日:2014.11.11

<関連動画>

福田のわかった数学〜高校1年生047〜三角形への応用(4)内心に関する問題

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比への応用(正弦・余弦・面積)#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
定義に従って$f(x)=x^n$を微分せよ.($n$は自然数)
この動画を見る 

福田の一夜漬け数学〜2次関数の最大最小(2)軸の動く最大最小〜高校1年生

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$y=x^2-4ax (0 \leqq x \leqq 2)$の最小値$m(a)$を求めよ。


$y=x^2-4ax (0 \leqq x \leqq 2)$の最大値$M(a)$を求めよ。


$y=M(a),y=m(a)$のグラフを描け。
$M(a)=\begin{eqnarray}
\left\{
\begin{array}{l}
4-8a (a \lt \frac{1}{2}) \\
0 (a \geqq \frac{1}{2})
\end{array}
\right.
\end{eqnarray}$


$m(a)=\begin{eqnarray}
\left\{
\begin{array}{l}
0 (a \lt 0) \\
-4a^2 (0 \leqq a \leqq 1) \\
4-8a (1 \lt a)
\end{array}
\right.
\end{eqnarray}$


$y=-x^2-ax+a (0 \leqq x \leqq 1)$の最小値$m(a)$を求めよ。
この動画を見る 

【よく出る】数学Ⅰ 2次関数の係数の符号決定

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師: 【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
2次関数$y=ax^2+bx+c$のグラフが、図のようになっているとき、次の値は、正、負、$0$のどれであるか。
(1)$a$
(2)$b$
(3)$c$
(4)$b^2-4ac$
(5)$a-b+c$
この動画を見る 

角度 解けたら楽しい レベルC

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
四角形ABCDは正方形
$\angle x=?$
*図は動画内参照
この動画を見る 

【数Ⅰ】2次関数:【難問】場合分け嫌いな人必見!絶対値付き2次関数:本論

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
aを定数とする。xについての方程式 $│(x-2)(x-4)│=ax-5a+\dfrac{1}{2}$ が相異なる4つの実数解を持つときのaの値の範囲を求めよ。

場合分けの必要なし!
aの値によらず必ず通る定点を考慮する必要もなし!
できるだけラクをして正解にたどり着きましょう。
この動画を見る 
PAGE TOP