【中学数学】連立方程式:基礎の基礎から解説!その1 連立方程式って? - 質問解決D.B.(データベース)

【中学数学】連立方程式:基礎の基礎から解説!その1 連立方程式って?

問題文全文(内容文):
$x+y=10,x-y=6$を同時に満たす整数解を考えながら連立方程式を学んでいこう。
チャプター:

0:00 オープニング
0:09 x+y=10の答えは?
2:17 連立方程式

単元: #数学(中学生)#中2数学#連立方程式
指導講師: 理数個別チャンネル
問題文全文(内容文):
$x+y=10,x-y=6$を同時に満たす整数解を考えながら連立方程式を学んでいこう。
投稿日:2021.03.22

<関連動画>

【裏技】これすげぇ

アイキャッチ画像
単元: #算数(中学受験)#計算と数の性質#いろいろな計算#数学(中学生)#中1数学#中2数学#中3数学#約数・倍数を利用する問題#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
約分のテクニック紹介動画です
この動画を見る 

気づけるか? 三重高校

アイキャッチ画像
単元: #数学(中学生)#中2数学#式の計算(単項式・多項式・式の四則計算)#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
$65^2-4 \times 2015 + 4 \times 31^2$

三重高等学校
この動画を見る 

等式を満たす2個のサイコロ 確率 立川高校 確率

アイキャッチ画像
単元: #数学(中学生)#中2数学#確率#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
大小2コのサイコロを同時に投げる。
大きいサイコロの目=x
小さいサイコロの目=y
$x^2-6x=y^2-6y$となる確率は?

立川高等学校
この動画を見る 

連立方程式の応用問題を難なく解く動画~全国入試問題解法 #shorts #数学 #高校受験 #過去問

アイキャッチ画像
単元: #数学(中学生)#中2数学#連立方程式#高校入試過去問(数学)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$ \begin{eqnarray}
\left\{
\begin{array}{l}
3x+2y=14 \\
ax+by=3
\end{array}
\right.
\end{eqnarray}$

$ \begin{eqnarray}
\left\{
\begin{array}{l}
bx-ay=-5 \\
4x-5y=11
\end{array}
\right.
\end{eqnarray}$
の解が一致するとき,$ a,b $の値をそれぞれ求めなさい.

巣鴨高校過去問
この動画を見る 

高等学校入学試験予想問題:近畿大学附属高等学校~全部入試問題

アイキャッチ画像
単元: #数学(中学生)#中2数学#中3数学#式の計算(単項式・多項式・式の四則計算)#連立方程式#式の計算(展開、因数分解)#1次関数#2次関数#円
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$ \boxed{1}$

(1)$ \dfrac{4x-y}{9}-\dfrac{5x-4y}{12}$を計算せよ.
(2)$ xy-3y-3x+9 $を因数分解せよ.
(3)
$ \begin{eqnarray}
\left\{
\begin{array}{l}
2x-y=1 \\
2ax+by=16
\end{array}
\right.
\end{eqnarray}$

$ \begin{eqnarray}
\left\{
\begin{array}{l}
ax+2y=8 \\
-3x+2y=3
\end{array}
\right.
\end{eqnarray}$
が同じ解をもつとき,$ a,b $の値を求めよ.

$ \boxed{2}$

図のように,関数$ y=x^2 $のグラフと直線$ y=-2x+8 $との交点を$ A,B,$直線$AB $の中点を$M$とするとき,次の問いに答えよ.
ただし,点$A$のx座標は負とする.
(1)点$A$の座標を求めよ.
(2)直線$OM$の式を求めよ.
(3)$ \triangle OCM $をx軸のまわりに1回転させてできる立体の体積を求めよ.

$ \boxed{3}$

図のように,点$O$を中心とし,線分$AB$を直径とする半径6の円があり,点$C$は線分$OB$の中点である,2点$D,E$は直径$AB$に対して同じ側の円周上にあり,$AB$と$CD$は直角,$AB$と$OE$は直角となっている.
また,線分$AD$と線分$OE$の交点を点$F$とする.
このとき,次の問いに答えよ.
(1)$CD$の長さを求めよ.
(2)$ \triangle AEF$の面積を求めよ.
(3)$ AF:AD$の比を求めよ.また,$\triangle DEF $の面積を求めよ.
この動画を見る 
PAGE TOP