大学入試問題#93 昭和大学医学部(2016) 対数 - 質問解決D.B.(データベース)

大学入試問題#93 昭和大学医学部(2016) 対数

問題文全文(内容文):
$log_xy=log_yx=-log_3(x+y)$をみたす実数$x,y$を求めよ。

出典:2016年昭和大学医学部 入試問題
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#学校別大学入試過去問解説(数学)#数学(高校生)#昭和大学
指導講師: ますただ
問題文全文(内容文):
$log_xy=log_yx=-log_3(x+y)$をみたす実数$x,y$を求めよ。

出典:2016年昭和大学医学部 入試問題
投稿日:2022.01.20

<関連動画>

【短時間でポイントチェック!!】対数方程式・対数不等式〔現役講師解説、数学〕

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#対数関数#数学(高校生)
指導講師: 3rd School
問題文全文(内容文):
①$\log_{3}x=2$
②$\log_{\sqrt{2}}x≧4$
③$\log_{\frac{1}{3}}x>2$
この動画を見る 

ざ・息抜き

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#2次関数#2次方程式と2次不等式#指数関数と対数関数#対数関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ \sqrt{2022}x^{\log_{2022}x}=x^2$の解の積の下3桁を求めよ.
この動画を見る 

東北大 対数方程式 高校数学 Japanese university entrance exam questions

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#東北大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
東北大学過去問題
連立方程式を解け
$\begin{eqnarray}
\left\{
\begin{array}{l}
x^y = y^x \\
log_xy + log_yx = \frac{13}{6}
\end{array}
\right.
\end{eqnarray}$
この動画を見る 

名古屋市立(医) 対数方程式 実数解 高校数学 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#微分法と積分法#対数関数#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#数学(高校生)#名古屋市立大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
'09名古屋市立大学過去問題
$(\log_2x)^3 - 6\log_{\sqrt2}x+k=0$
このxについての方程式が異なる2つの解をもつkの値と解を求めよ。
この動画を見る 

【短時間でポイントチェック!!】対数の基礎〔現役講師解説、数学〕

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#対数関数#数学(高校生)
指導講師: 3rd School
問題文全文(内容文):
①$\log_3243$
②$\log_{10}\frac{1}{1000}$
③$\log_\frac{1}{3}\sqrt27$
この動画を見る 
PAGE TOP