福田のわかった数学〜高校1年生064〜場合の数(3)約数の個数と総和 - 質問解決D.B.(データベース)

福田のわかった数学〜高校1年生064〜場合の数(3)約数の個数と総和

問題文全文(内容文):
数学$\textrm{I}$ 場合の数(3) 約数の総和
600の正の約数の個数と総和を求めよ。
また、正の約数のうち、偶数であるものの
個数とその総和を求めよ。
単元: #数A#場合の数と確率#場合の数#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{I}$ 場合の数(3) 約数の総和
600の正の約数の個数と総和を求めよ。
また、正の約数のうち、偶数であるものの
個数とその総和を求めよ。
投稿日:2021.10.06

<関連動画>

山梨大 順列の証明

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#場合の数#学校別大学入試過去問解説(数学)#山梨大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
2019年 山梨大学 過去問

赤玉$p$個,青玉$q$個,白玉$r$個
合計$n$個を1列に並べてできる順列の総数が
$\frac{n!}{p!f!r!}$であることを証明せよ。
この動画を見る 

藤井聡太 三冠 竜王奪取の確率を計算する

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
藤井聡太 三冠 竜王奪取の確率を解説していきます.
この動画を見る 

確率 漸化式 なぜ計算ミスに気づけたか

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数列#漸化式#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
サイコロをふる
$1\rightarrow:+1$進む
$2~6\rightarrow:+2$進む

原点スタート
$n$回目に偶数上にいる確率を$P_{n}$とする
$P_{n}$を$n$で表せ
この動画を見る 

福田の数学〜慶應義塾大学2025経済学部第3問〜反復試行の確率と条件付き確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#場合の数#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{3}$

$2$枚の硬貨を同時に投げることを試行という。

各回の試行において、座標平面上の点$P$は

次の$(A),(B),(C)$に従って座標平面を移動する。

$(A)$ 点$P$が$(x,y)$にあるとき、表が$2$枚出れば

$(x+1,y+\sqrt3)$に移動する。

$(B)$ 点$P$が$(x,y)$にあるとき、裏が$2$枚出れば

$(x+1,y-\sqrt3)$に移動する。

$(C)$点$P$が$(1,\sqrt3)$にあるとき、

表と裏が$1$枚ずつ出れば

$(x-2,y)$に移動する。

例えば、点$P$が$(1,\sqrt3)$にあるとき、

裏が$2$枚出れば、点$P$は$(2,0)$に移動する。

(1)$1$回目の試行前に原点にある点$P$が、

$3$回目の試行後原点にある確率は

$\dfrac{\boxed{ア}}{\boxed{イウ}}$である。

(2)$1$回目の試行前に原点がある点$P$が、

$3$回目の試行前に$y$軸上にある確率は

$\dfrac{\boxed{エ}}{\boxed{オ}}$

(3)$1$回目の試行前に原点がある点$P$が、

$5$回目の試行前に$x$軸上にある確率は

$\dfrac{\boxed{カキ}}{\boxed{クケコ}}$である。

(4)$1$回目の試行前に原点にある点$P$が、

$5$回目の試行後に$x$軸上にあるとき。

$8$回目の試行後に円$x^2+y^2=4$上にある

条件付き確率は$\dfrac{\boxed{サシ}}{\boxed{スセソ}}$である。

$2025$年慶應義塾大学経済学部過去問題
この動画を見る 

福田の数学〜慶應義塾大学2024年看護医療学部第1問(1)〜さいころの目の積が4の倍数になる確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ (1)4個のさいころを同時に投げるとき、出た目の積が偶数になる確率は$\boxed{\ \ ア\ \ }$であり、出た目の積が4の倍数になる確率は$\boxed{\ \ イ\ \ }$である。
この動画を見る 
PAGE TOP