微分法と積分法 数Ⅱ 複合関数の最大最小【マコちゃんねるがていねいに解説】 - 質問解決D.B.(データベース)

微分法と積分法 数Ⅱ 複合関数の最大最小【マコちゃんねるがていねいに解説】

問題文全文(内容文):
x+3y=9,x≧0,y≧0のとき,x²yの最大値,最小値を求めたい。
(1) x²yをxだけの式で表せ。
(2) xの取り得る範囲を求めよ。
(3) x²yの最大値と最小値と,そのときのx,yの値を求めよ。
チャプター:

0:00 オープニング
0:10 問題概要説明
0:47 (1)の解答
1:36 (2)の解答
3:55 (3)の解答
4:15 グラフの概形
5:18 最大値
5:44 最小値

単元: #数Ⅱ#微分法と積分法#接線と増減表・最大値・最小値#数学(高校生)
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#微分法と積分法#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
x+3y=9,x≧0,y≧0のとき,x²yの最大値,最小値を求めたい。
(1) x²yをxだけの式で表せ。
(2) xの取り得る範囲を求めよ。
(3) x²yの最大値と最小値と,そのときのx,yの値を求めよ。
投稿日:2024.10.11

<関連動画>

福田の数学〜慶應義塾大学2024年商学部第3問〜放物線と三角形の面積の最大

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ $f(x)$=$\displaystyle-\frac{1}{8}x^2$+$5x$+18 とし、放物線$C$:$y$=$f(x)$と2つの直線$l_1$:$y$=$-x$, $l_2$:$y$=$x$ を考える。$C$と$l_1$の共有点のうち$x$座標が負のものをAとし、$C$と$l_2$の共有点のうち$x$座標が正のものをBとする。また、Aの$x$座標を$a$、Bの$x$座標を$b$とする。
(i)$a$=$\boxed{アイ}$-$\boxed{ウエ}\sqrt{\boxed{オ}}$, $a$=$\boxed{カキ}$である。
(ii)$C$と$l_2$で囲まれた部分のうち、$x$≧0の範囲にあるものの面積は$\boxed{クケコサ}$である。
以下、Pを$C$上の点とし、Pの$x$座標を$p$とする。またPにおける$C$の接線と$y$軸の交点をDとする。
(iii)$p$が0<$p$<$b$の範囲を動くとき、△ABPの面積が最大になるのは
$p$=$\boxed{シス}$-$\boxed{セ}\sqrt{\boxed{ソ}}$ のときである。
(iv)$p$=8 のとき、Dの$y$座標は$\boxed{タチ}$ である。
(v)$p$が0<$p$<$b$の範囲を動くとき、△BDPの面積$S$が最大になるのは
$p$=$\boxed{ツテ}$ のときであり、そのときの$S$は$\boxed{トナニ}$である。
この動画を見る 

整式の剰余2022

アイキャッチ画像
単元: #数Ⅱ#式と証明#整式の除法・分数式・二項定理#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ x^{2022}$を$ x^6-x^5+x^4-x^3+x^2-x+1$で割った余りを求めよ.
この動画を見る 

福田の数学〜慶應義塾大学2021年看護医療学部第1問(3)〜指数法則と式の値

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#指数関数#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}} (3)\ 実数aが2^a-2^{-a}=3を満たしているとき、2^a=\boxed{\ \ ウ\ \ }であり、\\
\\
4^a-4^{-a}=\boxed{\ \ エ\ \ }\\
\\
である。
\end{eqnarray}

2021慶應義塾大学看護医療学部過去問
この動画を見る 

整式の剰余 大分大(医)の復習問題

アイキャッチ画像
単元: #数Ⅱ#式と証明#整式の除法・分数式・二項定理
指導講師: 鈴木貫太郎
問題文全文(内容文):
$n$を自然数とする.
$x^n$を$x^4+1$で割った余りを求めよ.

大分大(医)過去問
この動画を見る 

福田のわかった数学〜高校2年生017〜折れ線の長さの最小値2

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#点と直線#円と方程式#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{II}$ 直線の方程式
原点中心,半径$r$の円$C$上に2点$A,B$を、
$\theta=\angle AOB \lt \displaystyle \frac{\pi}{2}$となるようにとり、劣弧$AB$
上に点$R$,線分$OA,OB$上にそれぞれ$P,Q$をとる。
$PQ+QR+RP$の最小値を$r,\theta$で表せ。
この動画を見る 
PAGE TOP