🎍西暦"2023"を含む入試予想問題(その1)~全国入試問題解法 - 質問解決D.B.(データベース)

🎍西暦"2023"を含む入試予想問題(その1)~全国入試問題解法

問題文全文(内容文):
$ 2023\times2021-2020^2-2022\times2025+2021^2+2022$を計算せよ.
単元: #数学(中学生)#中2数学#式の計算(単項式・多項式・式の四則計算)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$ 2023\times2021-2020^2-2022\times2025+2021^2+2022$を計算せよ.
投稿日:2023.01.01

<関連動画>

福田の数学〜京都大学2023年理系第6問〜チェビシェフの多項式と論証(PART1)

アイキャッチ画像
単元: #式の計算(単項式・多項式・式の四則計算)#数Ⅱ#大学入試過去問(数学)#三角関数#学校別大学入試過去問解説(数学)#その他#推理と論証#推理と論証#京都大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{6}$ pを3以上の素数とする。また、θを実数とする。
(1)$\cos3\theta$と$\cos4\theta$を$\cos\theta$の式として表せ。
(2)$\cos\theta$=$\frac{1}{p}$のとき、θ=$\frac{m}{n}$・$\pi$となるような正の整数m,nが存在するか否かを理由をつけて判定せよ。

チェビシェフの多項式
$\cos n\theta$=$T_n$($\cos\theta$)を満たすn次の多項式$T_n(x)$が存在し、その係数はすべて整数であり、最高次の係数が$2^{n-1}$である。
これが、すべての自然数nについて成り立つことを数学的帰納法で証明せよ。

2023京都大学理系過去問
この動画を見る 

【高校受験対策】数学-死守19

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#中3数学#方程式#式の計算(単項式・多項式・式の四則計算)#2次方程式#比例・反比例#確率#文章題#文章題その他#標本調査
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①$8-(-13)$を計算しなさい.

②$(- 3) ^ 2 + \left(-\dfrac{1}{3}\right)\times 6$ を計算しなさい.

③$(7a - 4b) + \dfrac{1}{2}(2b - 6a)$ を計算しなさい.

④方程式$ 0.2(x - 2) = x + 1.2$ を解きなさい.

⑤$\sqrt{48}-\sqrt{27}+5\sqrt3$を計算しなさい.

⑥二次方程式$x ^ 2 + 7x + 5 = 0 $を解きなさい.

⑦$y$は$x$の2乗に比例し,
$ x = 2 $のとき,$y=1$である.
$y$を$x$の式で表しなさい.

⑧右の資料は,ある生徒が受けた第1回から第6回までの数学のテストの得点の記録のうち,
第1回から第5回までの得点の記録である.
第1回から第6回までの得点の中央値が80点となるとき,
第6回のテストの得点を求めなさい.

$\boxed{83 \quad 78\quad 74\quad 77 \quad 96}$ (単位:点)

⑨$m$と$n$は連続する正の整数である.
次のア~エのうちから,次の値が偶数となるものを一つ選び,
符号で答えなさい.ただし,$m \lt n$とする.

ア.$m+n$
イ.$n-m$
ウ.m + n + 2$
エ.$mn$

⑩箱の中に同じ大きさの白い球だけがたくさん入っている.
この白い球が何個あるか,標本調査を行って推測しょうと考えた.
そこでオレンジ色の球200個を箱に入れてよくかき混ぜ,
そこから50個を無作為に抽出したところ,
オレンジ色の球が4個含まれていた.
はじめに箱の中に入っていた白い球の個数を推測しなさい

①箱の中に$②,③,④,⑥,⑧,⑨$のカードがそれぞれ1枚ずつ入っている.
この箱から同時に2枚取り出すとき,
取り出した2枚のカードに書かれた数の最小公倍数が,
1桁の数になる確率を求めなさい.
ただし,どのカードの取り出し方も同様に確からしいものとする.
この動画を見る 

中2数学「図形の文字式の利用」【毎日配信】

アイキャッチ画像
単元: #数学(中学生)#中2数学#式の計算(単項式・多項式・式の四則計算)
指導講師: 中学受験算数・高校受験数学けいたくチャンネル
問題文全文(内容文):
中2~第9回図形の文字式の利用~

例1 
底辺が0、高さがhの三角形Aがあります。
この三角形Aの底辺を4倍にし、高さを半分にした三角形Bを つくると、三角形Bの面積は三角形Aの面積の何倍になりますか。

例2
底面の半径がr、高さがhの円錐Aがあります.
この円錐Aの半径を半分にし、高さを2倍にした円錐Bを つくると、円錐Bの体積は円錐の体積の何倍ですか。
この動画を見る 

計算したらどれが1番大きいの? おかやま山陽(岡山)

アイキャッチ画像
単元: #数学(中学生)#中2数学#式の計算(単項式・多項式・式の四則計算)
指導講師: 数学を数楽に
問題文全文(内容文):
1番大きいのは?
(1)71×79
(2)72×78
(3)73×77
(4)74×76
(5)75×75

おかやま山陽高校
この動画を見る 

【高校受験対策/数学】死守53

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#中3数学#正の数・負の数#式の計算(単項式・多項式・式の四則計算)#連立方程式#式の計算(展開、因数分解)#平方根#2次方程式#文字と式
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守53

①$2-(-9)$を計算せよ。

②$52a^2b \div (-4a)$を計算せよ。

③$\sqrt{28}+\frac{49}{\sqrt{7}}$を計算せよ。

④$\frac{3x-y}{3}-\frac{x-2y}{4}$を計算せよ。

⑤$(\sqrt{2}+1)^2-5({\sqrt{2}+1)}+4$を計算せよ。

⑥2次方程式$x^2-5x-3=0$を解きなさい。

⑦関数$y=-\frac{1}{3}x^2$について、$x$の値が$3$から$6$まで増加するときの変化の割合を求めなさい。

⑧連立方程式
$ax+by=10$
$bx-ay=5$
の解が$x=2$、$y=1$であるとき$a$、$b$の値を求めなさい。

⑨ある動物園では、大人1人の入園料が子ども1人の入園料より600円高い。
大人1人の入園料と子ども 1人の入園料の比が$5:2$であるとき、子ども1人の入園料を求めなさい。

⑩$\frac{5880}{n}$が自然数の平方となるような、最も小さい自然数$n$の値を求めなさい。
この動画を見る 
PAGE TOP