問題文全文(内容文):
\( a+b=\frac{1}{2}\) , \( b+c=\frac{1}{3}\) , \( c+a=\frac{1}{6}\)のとき
\( a^2+b^2+c^2+2ab+2bc+2ca\)
の値を求めよ
\( a+b=\frac{1}{2}\) , \( b+c=\frac{1}{3}\) , \( c+a=\frac{1}{6}\)のとき
\( a^2+b^2+c^2+2ab+2bc+2ca\)
の値を求めよ
単元:
#数学(中学生)#中1数学#文字と式#高校入試過去問(数学)#同志社国際高等学校
指導講師:
高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
\( a+b=\frac{1}{2}\) , \( b+c=\frac{1}{3}\) , \( c+a=\frac{1}{6}\)のとき
\( a^2+b^2+c^2+2ab+2bc+2ca\)
の値を求めよ
\( a+b=\frac{1}{2}\) , \( b+c=\frac{1}{3}\) , \( c+a=\frac{1}{6}\)のとき
\( a^2+b^2+c^2+2ab+2bc+2ca\)
の値を求めよ
投稿日:2024.09.23





