【数B】【数列】数列{an}の一般項を求めよ。(1)a1=1, a2=2, an+2+3an+1-4an=0(2)a1=0, a2=1, an+2+5an+1+6an=0他1問 - 質問解決D.B.(データベース)

【数B】【数列】数列{an}の一般項を求めよ。(1)a1=1, a2=2, an+2+3an+1-4an=0(2)a1=0, a2=1, an+2+5an+1+6an=0他1問

問題文全文(内容文):
次の条件によって定められる数列$a_n$の一般項を求めよ。
$a_1 = 1$,$a_2 = 2$
$a_{n+2} + 3a_{n+1} - 4a_n = 0$

$a_1 = 0$,$a_2 = 1$
$a_{n+2} + 5a_{n+1} + 6a_n = 0$

$a_1 = 1$, $a_2 = 4$
$a_{n+2} - 6a_{n+1} + 9a_n = 0$
チャプター:

00:00 スタート
00:17 (1)解説
04:46 (2)解説
06:30 (3)解説

単元: #数列#漸化式#数学(高校生)#数B
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#中高教材#数列
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の条件によって定められる数列$a_n$の一般項を求めよ。
$a_1 = 1$,$a_2 = 2$
$a_{n+2} + 3a_{n+1} - 4a_n = 0$

$a_1 = 0$,$a_2 = 1$
$a_{n+2} + 5a_{n+1} + 6a_n = 0$

$a_1 = 1$, $a_2 = 4$
$a_{n+2} - 6a_{n+1} + 9a_n = 0$
投稿日:2025.10.09

<関連動画>

順天堂大(医)等比数列の和の収束

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#数学(高校生)#数B#順天堂大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
{$a_n$}は等比数列
無限級数
$a_2+a_4+a_6+…$は$\displaystyle \frac{12}{5}$に収束
$a_3+a_6+a_9+…$は$\displaystyle \frac{24}{19}$に収束

{$a_n$}の公比、初項、無限階数$a_1+a_2+1_3+…$は[ ]に収束するか求めよ

出典:順天堂大学医学部 過去問
この動画を見る 

いい問題

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
n自然数
$\sqrt{n}$に最も近い整数を$a_n$とする
(例)$a_3=2$,$a_{10}=3$
$\displaystyle\sum_{n=1}^{2023}\frac{1}{a_n}$を求めよ
この動画を見る 

18東京都教員採用試験(数学:場合の数、数列)

アイキャッチ画像
単元: #数A#場合の数と確率#場合の数#数列#数列とその和(等差・等比・階差・Σ)#その他#数学(高校生)#数B#教員採用試験
指導講師: ますただ
問題文全文(内容文):
1⃣-(2)
平面上の10コの円は、任意の2コの円も異なる2点で交わり、3コの円は1点で交わらないとき交点の総数を求めよ。
この動画を見る 

大分大 漸化式 高校数学 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#大分大学#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
大分大学過去問題
$a_1=\frac{1}{2},a_{n+1}=a_n+\frac{2n+1}{2^{n+1}}$
一般項を求めよ。
この動画を見る 

漸化式 関西医科大

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#数B#関西医科大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
2021関西医科大学過去問題
$a_1=\frac{1}{13}$ n=1,2,・・・自然数
$5a_{n+1}=10a_n-a_{n+1}・a_n$
一般項$a_n$を求めよ
この動画を見る 
PAGE TOP