【数検3級】数学検定3級2次 問題3・4 - 質問解決D.B.(データベース)

【数検3級】数学検定3級2次 問題3・4

問題文全文(内容文):
問題3.下の①~⑥の式で表される関数のグラフについて、次の問いに答えなさい。
  ①$y=3x$   ②$y=-3x$  ③$y=\dfrac{1}{3}x$
  ④$y=-\dfrac{1}{3}x$ ⑤$y=\dfrac{3}{x}$  ⑥$y=-\dfrac{3}{x}$

(5) グラフが点(-1,3)を通る関数を、①~⑥の中からすべて選びなさい。
(6) グラフが双曲線である関数を、①~⑥の中からすべて選びなさい。

問題4.箱の中に、赤球が3個、白球が2個、黒球が1個入っています。この箱の中から球を取り出すとき、次の問いに答えなさい。
(7) 球を1個取り出すとき、取り出した球が白球である確率を求めなさい。
(8) 同時に2個の球を取り出すとき、取り出した球が2個とも赤球である確率を求めなさい。
(9) 同時に2個の球を取り出すとき、取り出した球が異なる色である確率を求めなさい。
チャプター:

0:00 (5)の解説
1:18 (6)の解説
1:59 (7)の解説
2:47 (8)の解説
4:38 (9)の解説
5:15 まとめ

単元: #数学検定・数学甲子園・数学オリンピック等#数学検定#数学検定3級
指導講師: 理数個別チャンネル
問題文全文(内容文):
問題3.下の①~⑥の式で表される関数のグラフについて、次の問いに答えなさい。
  ①$y=3x$   ②$y=-3x$  ③$y=\dfrac{1}{3}x$
  ④$y=-\dfrac{1}{3}x$ ⑤$y=\dfrac{3}{x}$  ⑥$y=-\dfrac{3}{x}$

(5) グラフが点(-1,3)を通る関数を、①~⑥の中からすべて選びなさい。
(6) グラフが双曲線である関数を、①~⑥の中からすべて選びなさい。

問題4.箱の中に、赤球が3個、白球が2個、黒球が1個入っています。この箱の中から球を取り出すとき、次の問いに答えなさい。
(7) 球を1個取り出すとき、取り出した球が白球である確率を求めなさい。
(8) 同時に2個の球を取り出すとき、取り出した球が2個とも赤球である確率を求めなさい。
(9) 同時に2個の球を取り出すとき、取り出した球が異なる色である確率を求めなさい。
投稿日:2022.09.26

<関連動画>

数検準1級1次過去問(7番 極限値)

アイキャッチ画像
単元: #数学検定・数学甲子園・数学オリンピック等#関数と極限#関数の極限#数学検定#数学検定準1級#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
7⃣$\displaystyle \lim_{ n \to \infty } n \{ log(n+3) - logn \}$
$\displaystyle \lim_{ n \to \infty } (1+\frac{1}{n})^n = \displaystyle \lim_{ n \to 0 } (1+n)^{\frac{1}{n}}=e$
この動画を見る 

重積分⑩-1【曲面の面積】(高専数学 微積II,数検1級1次解析対応)

アイキャッチ画像
単元: #数学検定・数学甲子園・数学オリンピック等#その他#数学検定#数学検定1級#その他#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$Z=\sqrt{a^2-x^2-y^2}$
$D:x^2+y^2=b^2$
(a>b>0)
D上の曲面Zの面積Sを求めよ。
この動画を見る 

重積分⑨-7【広義積分】(高専数学 微積II,数検1級1次解析対応)

アイキャッチ画像
単元: #数Ⅱ#数学検定・数学甲子園・数学オリンピック等#微分法と積分法#数学検定#数学検定1級#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$D:1\leqq x,1\leqq y$である.
$\iint_D \dfrac{1}{x^2y^2} \ dx \ dy$

これを解け.
この動画を見る 

微分方程式④-1【同次形】(高専数学 数検1級)

アイキャッチ画像
単元: #数学検定・数学甲子園・数学オリンピック等#微分とその応用#数学検定#数学検定1級#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
(1)$\frac{dx}{dt}=\frac{x}{t}-\frac{2t}{x}$
(2)$\frac{dx}{dt}=\frac{x}{t}+cos^2\frac{x}{t}$
(3)$\frac{dx}{dt}=\frac{x}{t}+e^{-\frac{x}{t}}$
この動画を見る 

#数検準1級1次#定積分#ますただ

アイキャッチ画像
単元: #数Ⅱ#数学検定・数学甲子園・数学オリンピック等#微分法と積分法#積分とその応用#定積分#不定積分・定積分#数学検定#数学検定準1級#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{2} (\displaystyle \frac{x^2}{2}+3x)e^{\frac{x}{2}}dx$

出典:
この動画を見る 
PAGE TOP