【数検3級】数学検定3級2次 問題3・4 - 質問解決D.B.(データベース)

【数検3級】数学検定3級2次 問題3・4

問題文全文(内容文):
問題3.下の①~⑥の式で表される関数のグラフについて、次の問いに答えなさい。
  ①$y=3x$   ②$y=-3x$  ③$y=\dfrac{1}{3}x$
  ④$y=-\dfrac{1}{3}x$ ⑤$y=\dfrac{3}{x}$  ⑥$y=-\dfrac{3}{x}$

(5) グラフが点(-1,3)を通る関数を、①~⑥の中からすべて選びなさい。
(6) グラフが双曲線である関数を、①~⑥の中からすべて選びなさい。

問題4.箱の中に、赤球が3個、白球が2個、黒球が1個入っています。この箱の中から球を取り出すとき、次の問いに答えなさい。
(7) 球を1個取り出すとき、取り出した球が白球である確率を求めなさい。
(8) 同時に2個の球を取り出すとき、取り出した球が2個とも赤球である確率を求めなさい。
(9) 同時に2個の球を取り出すとき、取り出した球が異なる色である確率を求めなさい。
チャプター:

0:00 (5)の解説
1:18 (6)の解説
1:59 (7)の解説
2:47 (8)の解説
4:38 (9)の解説
5:15 まとめ

単元: #数学検定・数学甲子園・数学オリンピック等#数学検定#数学検定3級
指導講師: 理数個別チャンネル
問題文全文(内容文):
問題3.下の①~⑥の式で表される関数のグラフについて、次の問いに答えなさい。
  ①$y=3x$   ②$y=-3x$  ③$y=\dfrac{1}{3}x$
  ④$y=-\dfrac{1}{3}x$ ⑤$y=\dfrac{3}{x}$  ⑥$y=-\dfrac{3}{x}$

(5) グラフが点(-1,3)を通る関数を、①~⑥の中からすべて選びなさい。
(6) グラフが双曲線である関数を、①~⑥の中からすべて選びなさい。

問題4.箱の中に、赤球が3個、白球が2個、黒球が1個入っています。この箱の中から球を取り出すとき、次の問いに答えなさい。
(7) 球を1個取り出すとき、取り出した球が白球である確率を求めなさい。
(8) 同時に2個の球を取り出すとき、取り出した球が2個とも赤球である確率を求めなさい。
(9) 同時に2個の球を取り出すとき、取り出した球が異なる色である確率を求めなさい。
投稿日:2022.09.26

<関連動画>

【数検2級】数学検定2級2次:問題7

アイキャッチ画像
単元: #数Ⅱ#数学検定・数学甲子園・数学オリンピック等#微分法と積分法#接線と増減表・最大値・最小値#数学検定#数学検定2級#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
$y=x^3-2x$ で表されるxy平面上の曲線をCとします。このとき、次の問いに答えなさい。
(1) C上の点($t,t^3-2t$)における接線の方程式をtを用いて表しなさい。
(2) 点(0,-2)からCへ引いた接線の方程式を求めなさい。
この動画を見る 

【中学数学】中学数学:数学検定3級2次:問題5

アイキャッチ画像
単元: #数学(中学生)#中2数学#数学検定・数学甲子園・数学オリンピック等#平行と合同#三角形と四角形#数学検定#数学検定3級
指導講師: 理数個別チャンネル
問題文全文(内容文):
問題5.右の図のように、平行四辺形ABCDの対角線AC上にAE=EF=FCとなるように、点E、Fを点Aに近いほうからこの
順にとり、点BとE、点DとFをそれぞれ線分で結びます。このとき、BE=DFとなることは、下のように証明できます。
[証明]
△ABEと△CDFにおいて
仮定より、AE=CF …①
[ア]から、AB=CD …②
AB∥DCより、[イ]から、∠BAE=∠DCF …③
①、②、③より、[ウ]から、△ABE≡△CDF
合同な図形の対応する辺は等しいから、BE=DF

次の問いに答えなさい。
(10) [ア]、[イ]にあてはまる言葉を、下のあ~おの中からそれぞれ1つ選びなさい。
  あ 平行四辺形の向かい合う辺は等しい
  い 平行四辺形の向かい合う角は等しい
  う 平行四辺形の対角線はそれぞれの中点で交わる
  え 平行線の同位角は等しい
  お 平行線の錯角は等しい
(11) [ウ]にあてはまる合同条件を、下のか~この中から1つ選びなさい。
  か 3組の辺がそれぞれ等しい
  き 2組の辺とその間の角がそれぞれ等しい。
  く 1組の辺とその両端の角がそれぞれ等しい。
  け 直角三角形の斜辺と1つの鋭角がそれぞれ等しい。
  こ 直角三角形の斜辺と他の1辺がそれぞれ等しい。
(12) △ABEの面積が12㎝²であるとき、△ACDの面積は何㎝²ですか。
単位をつけて答えなさい。
この動画を見る 

【数検3級】中学数学:数学検定3級2次:問題9

アイキャッチ画像
単元: #数学(中学生)#中1数学#数学検定・数学甲子園・数学オリンピック等#資料の活用#数学検定#数学検定3級
指導講師: 理数個別チャンネル
問題文全文(内容文):
問題9.次の問いに答えなさい。
(19) ある中学校の1年生の生徒数は18人、2年生の生徒数は27人、3年生の生徒数は20人です。それぞれの学年の通学時間を調べて平均を求めると、1年生は15.5分、2年生は32.0分、3年生は21.5分でした。生徒全体の通学時間の平均は何分ですか。
(20) いくつかの値からなるデータの中に極端にかけ離れた値があると、平均値はその値に強く影響を受けてしまうことがあります。
 Aさんは5つの正の整数を思い浮かべました。これらの数の平均値は2021です。このとき、Aさんが思い浮かべた可能性がある数
の最大値を求めなさい。ただし、5つの数に同じ数があってもよいものとします。
この動画を見る 

【数検3級】数学検定3級対策問題6(23)~(26)

アイキャッチ画像
単元: #数学検定・数学甲子園・数学オリンピック等#数学検定#数学検定3級
指導講師: 理数個別チャンネル
問題文全文(内容文):
問題6.次の問いに答えなさい。
(23) yはxに反比例し、$x=-3$のとき$y=-12$です。yをxを用いて表しなさい。
(24) 右の度数分布表において、階級の幅は何㎝ですか。
(25) 等式$a=\dfrac{1}{2}(b+c)$ をbについて解きなさい。
(26) 右の図で、$\ell \parallel m$のとき、$∠x$の大きさは何度ですか。
この動画を見る 

数学検定について~受ける意味ある?傾向と対策は?~全国模試1位の勉強法【篠原好】

アイキャッチ画像
単元: #数学検定・数学甲子園・数学オリンピック等#数学検定#その他#勉強法
指導講師: 篠原好【京大模試全国一位の勉強法】
問題文全文(内容文):
受ける意味ある?傾向と対策は?
「数学検定」についてお話しています。
この動画を見る 
PAGE TOP