福田の数学〜東京理科大学2024創域理工学部第3問〜関数の増減と変曲点と体積面積 - 質問解決D.B.(データベース)

福田の数学〜東京理科大学2024創域理工学部第3問〜関数の増減と変曲点と体積面積

問題文全文(内容文):
$\boxed{3}$関数$f(x)$を
$f(x)=\frac{logx}{\sqrt{x}} (x\gt 0)$
と定める。ただし、logは自然対数とする。
(1)導関数$f'(x)$と第2次導関数$f''(x)$をそれぞれ求めよ。
座標平面上の曲線$y=f(x)(x \gt 0)$を$C$とおき、$C$の交点を$P$とおく。$C$と$x$軸の交点を$Q$とする。$C$と直線$PQ$で囲まれた部分を$A$とし、$A$を$x$軸の周りに1回転して得られる回転体の体積を$V$とする。
(2)$P$の座標を求めよ。
(3)$V$を求めよ。
(4)$A$の面積を求めよ。
単元: #大学入試過去問(数学)#積分とその応用#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#東京理科大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\boxed{3}$関数$f(x)$を
$f(x)=\frac{logx}{\sqrt{x}} (x\gt 0)$
と定める。ただし、logは自然対数とする。
(1)導関数$f'(x)$と第2次導関数$f''(x)$をそれぞれ求めよ。
座標平面上の曲線$y=f(x)(x \gt 0)$を$C$とおき、$C$の交点を$P$とおく。$C$と$x$軸の交点を$Q$とする。$C$と直線$PQ$で囲まれた部分を$A$とし、$A$を$x$軸の周りに1回転して得られる回転体の体積を$V$とする。
(2)$P$の座標を求めよ。
(3)$V$を求めよ。
(4)$A$の面積を求めよ。
投稿日:2024.10.08

<関連動画>

大学入試問題#445「何度か類題を解いたと思う」 藤田医科大学(2023) #定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#藤田医科大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
(1)$\displaystyle \int_{3}^{99} \sqrt{ \sqrt{ 1+x }-1 }\ dx$


(2)$\displaystyle \int_{1}^{3} \sqrt{ \displaystyle \frac{4}{x}-1 }\ dx$


出典:2023年藤田医科大学 入試問題
この動画を見る 

#岩手大学2024#定積分_34

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#岩手大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{2\pi} (4\pi^2-t^2)\cos t dt$

出典:2024年岩手大学
この動画を見る 

08京都府教員採用試験(数学:2番 積分による面積比較)

アイキャッチ画像
単元: #積分とその応用#面積・体積・長さ・速度#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
2⃣ $1+\frac{1}{2} + \frac{1}{3} + \cdots +\frac{1}{n} > log(n+1)$を示せ。
$n \in \mathbb{N}$
この動画を見る 

大学入試問題#410「爽やかな積分問題」 産業医科大学2017 #定積分

アイキャッチ画像
単元: #積分とその応用#定積分#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{2}^{1} \sqrt{ -1+\displaystyle \frac{2}{x} }\ dx$

出典:2017年産業医科大学 入試問題
この動画を見る 

大学入試問題#8 東京理科大学(2021) 定積分

アイキャッチ画像
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
次の定積分を計算せよ。

$I_0=\displaystyle \int_{0}^{\frac{\pi}{4}}\displaystyle \frac{\sin\ x-\sqrt{ 2 }\ \cos\ x}{\sqrt{ 2 }\ \sin\ x+\cos\ x}\ dx$

$I_1=\displaystyle \int_{0}^{\frac{\pi}{4}}\displaystyle \frac{\sin\ x}{\sqrt{ 2 }\ \sin\ x+\cos\ x}\ dx$

$I_2=\displaystyle \int_{0}^{\frac{\pi}{4}}\displaystyle \frac{\cos\ x}{\sqrt{ 2 }\ \sin\ x+\cos\ x}\ dx$

出典:2021年東京理科大学 入試問題
この動画を見る 
PAGE TOP