福田次郎
※下の画像部分をクリックすると、先生の紹介ページにリンクします。
福田の1.5倍速演習〜合格する重要問題071〜東京医科歯科大学2017年度医学部第2問〜空間における球面と軌跡の問題
単元:
#数Ⅱ#大学入試過去問(数学)#平面上のベクトル#空間ベクトル#図形と方程式#円と方程式#軌跡と領域#ベクトルと平面図形、ベクトル方程式#空間ベクトル#学校別大学入試過去問解説(数学)#数学(高校生)#数C#東京医科歯科大学
指導講師:
福田次郎
問題文全文(内容文):
$\Large{\boxed{2}}$ xyz空間において、点O(0, 0, 0)と点A(0, 0, 1)を結ぶ線分OAを直径にもつ球面を$\sigma$とする。このとき以下の各問に答えよ。
(1) 球面$\sigma$の方程式を求めよ。
(2) xy平面上にあってOと異なる点Pに対して、線分APと球面$\sigma$との交点をQとするとき、$\overrightarrow{ OQ } \bot \overrightarrow{ AP }$を示せ。
(3) 点S(p, q, r)を$\overrightarrow{OS}・\overrightarrow{ AS }=-|\overrightarrow{ OS }|^2$を満たす、xy平面上にない定点とする。$\sigma$上の点Qが$\overrightarrow{ OS } \bot \overrightarrow{ SQ }$を満たしながら動くとき、直線AQとxy平面上の交点Pはどのような図形を描くか。p, q, rを用いて答えよ。
2017東京医科歯科大学医学部過去問
この動画を見る
$\Large{\boxed{2}}$ xyz空間において、点O(0, 0, 0)と点A(0, 0, 1)を結ぶ線分OAを直径にもつ球面を$\sigma$とする。このとき以下の各問に答えよ。
(1) 球面$\sigma$の方程式を求めよ。
(2) xy平面上にあってOと異なる点Pに対して、線分APと球面$\sigma$との交点をQとするとき、$\overrightarrow{ OQ } \bot \overrightarrow{ AP }$を示せ。
(3) 点S(p, q, r)を$\overrightarrow{OS}・\overrightarrow{ AS }=-|\overrightarrow{ OS }|^2$を満たす、xy平面上にない定点とする。$\sigma$上の点Qが$\overrightarrow{ OS } \bot \overrightarrow{ SQ }$を満たしながら動くとき、直線AQとxy平面上の交点Pはどのような図形を描くか。p, q, rを用いて答えよ。
2017東京医科歯科大学医学部過去問
福田の1.5倍速演習〜合格する重要問題070〜筑波大学2017年度理系第5問〜格子点の個数とガウス記号と区分求積
単元:
#大学入試過去問(数学)#数列#漸化式#関数と極限#積分とその応用#関数(分数関数・無理関数・逆関数と合成関数)#関数の極限#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#筑波大学#数B#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
$\Large{\boxed{5}}$ xy平面において、x座標とy座標がともに整数である点を格子点という。また、実数aに対して、a以下の最大の整数を[a]で表す。記号[ ]をガウス記号という。
以下の問いではNを自然数とする。
(1) nを0 $\leqq$ n $\leqq$ Nを満たす整数とする。点(n, 0)と点(n, N$\sin\left(\displaystyle\frac{\pi x}{2N}\right)$)を結ぶ線分上にある格子点の個数をガウス記号を用いて表せ。
(2) 直線y=xと、x軸、および直線x=Nで囲まれた領域(境界を含む)にある格子点の個数をA(N)とおく。このときA(N)を求めよ。
(3) 曲線y=N$\sin\left(\displaystyle\frac{\pi x}{2N}\right)$(0 $\leqq$ x $\leqq$ N)と、x軸、および直線x=Nで囲まれた領域(境界を含む)にある格子点の個数をB(N)とおく。(2)のA(N)に対して$\displaystyle\lim_{N \to \infty}\frac{B(N)}{A(N)}$を求めよ。
2017筑波大学理系過去問
この動画を見る
$\Large{\boxed{5}}$ xy平面において、x座標とy座標がともに整数である点を格子点という。また、実数aに対して、a以下の最大の整数を[a]で表す。記号[ ]をガウス記号という。
以下の問いではNを自然数とする。
(1) nを0 $\leqq$ n $\leqq$ Nを満たす整数とする。点(n, 0)と点(n, N$\sin\left(\displaystyle\frac{\pi x}{2N}\right)$)を結ぶ線分上にある格子点の個数をガウス記号を用いて表せ。
(2) 直線y=xと、x軸、および直線x=Nで囲まれた領域(境界を含む)にある格子点の個数をA(N)とおく。このときA(N)を求めよ。
(3) 曲線y=N$\sin\left(\displaystyle\frac{\pi x}{2N}\right)$(0 $\leqq$ x $\leqq$ N)と、x軸、および直線x=Nで囲まれた領域(境界を含む)にある格子点の個数をB(N)とおく。(2)のA(N)に対して$\displaystyle\lim_{N \to \infty}\frac{B(N)}{A(N)}$を求めよ。
2017筑波大学理系過去問
福田の1.5倍速演習〜合格する重要問題069〜千葉大学2017年度理系第8問〜放物線上の3点を頂点とする三角形の面積
単元:
#数Ⅰ#大学入試過去問(数学)#2次関数#2次関数とグラフ#関数と極限#関数の極限#学校別大学入試過去問解説(数学)#千葉大学#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
$\Large{\boxed{8}}$ tを0以上の実数とし、Oを原点とする座標平面上の2点P($p, p^2$), Q($q, q^2$)で3つの条件
PQ=2, p<q, p+q=$\sqrt t$
を満たすものを考える。$\triangle OPQ$の面積をSとする。ただし、点Pまたは点Qが原点Oと一致する場合はS=0とする。
(1) pとqをそれぞれtを用いて表せ。
(2) Sをtを用いて表せ。
(3) S=1となるようなtの個数を求めよ。
2017千葉大学理系過去問
この動画を見る
$\Large{\boxed{8}}$ tを0以上の実数とし、Oを原点とする座標平面上の2点P($p, p^2$), Q($q, q^2$)で3つの条件
PQ=2, p<q, p+q=$\sqrt t$
を満たすものを考える。$\triangle OPQ$の面積をSとする。ただし、点Pまたは点Qが原点Oと一致する場合はS=0とする。
(1) pとqをそれぞれtを用いて表せ。
(2) Sをtを用いて表せ。
(3) S=1となるようなtの個数を求めよ。
2017千葉大学理系過去問
福田の1.5倍速演習〜合格する重要問題068〜千葉大学2017年度理系第11問〜部分和で定義された数列の極限
単元:
#大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#関数と極限#数列の極限#千葉大学#数学(高校生)#数B#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
$\Large{\boxed{11}}$ 数列$\left\{a_n\right\}$を次の条件によって定める。
$a_1=2$, $a_{n+1}=1+\frac{1}{\displaystyle1-\sum_{k=1}^n\frac{1}{a_k}}$ (n=1,2,3,$\cdots$)
(1) $a_5$を求めよ。
(2) $a_{n+1}$を$a_n$の式で表せ。
(3) 無限級数$\displaystyle\sum_{k=1}^{\infty}\frac{1}{a_k}$が収束することを示し、その和を求めよ。
2017千葉大学理系過去問
この動画を見る
$\Large{\boxed{11}}$ 数列$\left\{a_n\right\}$を次の条件によって定める。
$a_1=2$, $a_{n+1}=1+\frac{1}{\displaystyle1-\sum_{k=1}^n\frac{1}{a_k}}$ (n=1,2,3,$\cdots$)
(1) $a_5$を求めよ。
(2) $a_{n+1}$を$a_n$の式で表せ。
(3) 無限級数$\displaystyle\sum_{k=1}^{\infty}\frac{1}{a_k}$が収束することを示し、その和を求めよ。
2017千葉大学理系過去問
福田の1.5倍速演習〜合格する重要問題067〜九州大学2017年度文系第4問〜最大公約数
単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#ユークリッド互除法と不定方程式・N進法#学校別大学入試過去問解説(数学)#数学(高校生)#九州大学
指導講師:
福田次郎
問題文全文(内容文):
$\Large{\boxed{4}}$ 以下の問いに答えよ。
(1) 2017と225の最大公約数を求めよ。
(2) 225との最大公約数が15となる2017以下の自然数の個数を求めよ。
(3) 225との最大公約数が15であり、かつ1998との最大公約数が111となる2017以下の自然数を全て求めよ。
2017九州大学文系過去問
この動画を見る
$\Large{\boxed{4}}$ 以下の問いに答えよ。
(1) 2017と225の最大公約数を求めよ。
(2) 225との最大公約数が15となる2017以下の自然数の個数を求めよ。
(3) 225との最大公約数が15であり、かつ1998との最大公約数が111となる2017以下の自然数を全て求めよ。
2017九州大学文系過去問
福田の数学〜2023年共通テスト速報〜数学IA第5問図形の性質〜作図によって描いた図形の性質
単元:
#数A#図形の性質#数学(高校生)#大学入試解答速報#数学#共通テスト
指導講師:
福田次郎
問題文全文(内容文):
【第5問】
(1) 円Oに対して、次の手順1で作図を行う。
[手順1]
(Step 1) 円Oと異なる2点で交わり、中心Oを通らない直線lを引く。円Oと直線lとの交点をA, Bとし、線分ABの中点Cをとる。
(Step 2) 円Oの周上に、点Dを$\angle COD$が鈍角となるようにとる。直線CDを引き、円Oとの交点でDとは異なる点をEとする。
(Step 3) 点Dを通り直線OCに垂直な直線を引き、直線OCとの交点をFとし、円Oとの交点でDとは異なる点をGとする。
(Step 4) 点Gにおける円Oの接線を引き、直線lとの交点をHとする。
このとき、直線lと点Dの位置によらず、直線EHは円Oの接線である。このことは、次の構想に基づいて、後のように説明できる。
[構想]
直線EHが円Oの接線であることを証明するためには、$\angle OEH=\boxed{\ \ アイ\ \ }°$であることを示せばよい。
手順1の(Step 1)と(Step 4)により、4点C, G, H, $\boxed{\boxed{\ \ ウ\ \ }}$は同一円周上にあることがわかる。よって、$\angle CHG=\boxed{\boxed{\ \ エ\ \ }}$である。一方、点Eは円Oの周上にあることから、$\boxed{\boxed{\ \ エ\ \ }}=\boxed{\boxed{\ \ オ\ \ }}$がわかる。よって、$\angle CHG=\boxed{\boxed{\ \ オ\ \ }}$であるので、4点C, G, H, $\boxed{\boxed{\ \ カ\ \ }}$は同一円周上にある。この円が点$\boxed{\boxed{\ \ ウ\ \ }}$を通ることにより、$\angle OEH=\boxed{\ \ アイ\ \ }°$を示すことができる。
$\boxed{\boxed{\ \ ウ\ \ }}$の解答群
⓪B ①D ②F ③O
$\boxed{\boxed{\ \ エ\ \ }}$の解答群
⓪$\angle AFC$ ①$\angle CDF$ ②$\angle CGH$ ③$\angle CBO$ ④$\angle FOG$
$\boxed{\boxed{\ \ オ\ \ }}$の解答群
⓪$\angle AED$ ①$\angle ADE$ ②$\angle BOE$ ③$\angle DEG$ ④$\angle EOH$
$\boxed{\boxed{\ \ カ\ \ }}$の解答群
⓪A ①D ②E ③F
(2) 円Oに対して、(1)の手順1とは直線lの引き方を変え、次の手順2で作図を行う。
[手順2]
(Step 1) 円Oと共有点をもたない直線lを引く。中心Oから直線lに垂直な直線を引き、直線lとの交点をPとする。
(Step 2) 円Oの周上に、点Qを$\angle POQ$が鈍角となるようにとる。直線PQを引き、円Oとの交点でQとは異なる点をRとする。
(Step 3) 点Qを通り直線OPに垂直な直線を引き、円Oとの交点でQとは異なる点をSとする。
(Step 4) 点Sにおける円Oの接線を引き、直線lとの交点をTとする。
このとき、$\angle PTS=\boxed{\boxed{\ \ キ\ \ }}$である。
円Oの半径が$\sqrt 5$で、OT=$3\sqrt 6$であったとすると、3点O, P, Rを通る円の半径は$\frac{\boxed{\ \ ク\ \ }\sqrt{\boxed{\ \ ケ\ \ }}}{\boxed{\ \ コ\ \ }}$であり、RT=$\boxed{\ \ サ\ \ }$である。
$\boxed{\boxed{\ \ キ\ \ }}$の解答群
⓪$\angle PQS$ ①$\angle PST$ ②$\angle QPS$ ③$\angle QRS$ ④$\angle SRT$
2023共通テスト過去問
この動画を見る
【第5問】
(1) 円Oに対して、次の手順1で作図を行う。
[手順1]
(Step 1) 円Oと異なる2点で交わり、中心Oを通らない直線lを引く。円Oと直線lとの交点をA, Bとし、線分ABの中点Cをとる。
(Step 2) 円Oの周上に、点Dを$\angle COD$が鈍角となるようにとる。直線CDを引き、円Oとの交点でDとは異なる点をEとする。
(Step 3) 点Dを通り直線OCに垂直な直線を引き、直線OCとの交点をFとし、円Oとの交点でDとは異なる点をGとする。
(Step 4) 点Gにおける円Oの接線を引き、直線lとの交点をHとする。
このとき、直線lと点Dの位置によらず、直線EHは円Oの接線である。このことは、次の構想に基づいて、後のように説明できる。
[構想]
直線EHが円Oの接線であることを証明するためには、$\angle OEH=\boxed{\ \ アイ\ \ }°$であることを示せばよい。
手順1の(Step 1)と(Step 4)により、4点C, G, H, $\boxed{\boxed{\ \ ウ\ \ }}$は同一円周上にあることがわかる。よって、$\angle CHG=\boxed{\boxed{\ \ エ\ \ }}$である。一方、点Eは円Oの周上にあることから、$\boxed{\boxed{\ \ エ\ \ }}=\boxed{\boxed{\ \ オ\ \ }}$がわかる。よって、$\angle CHG=\boxed{\boxed{\ \ オ\ \ }}$であるので、4点C, G, H, $\boxed{\boxed{\ \ カ\ \ }}$は同一円周上にある。この円が点$\boxed{\boxed{\ \ ウ\ \ }}$を通ることにより、$\angle OEH=\boxed{\ \ アイ\ \ }°$を示すことができる。
$\boxed{\boxed{\ \ ウ\ \ }}$の解答群
⓪B ①D ②F ③O
$\boxed{\boxed{\ \ エ\ \ }}$の解答群
⓪$\angle AFC$ ①$\angle CDF$ ②$\angle CGH$ ③$\angle CBO$ ④$\angle FOG$
$\boxed{\boxed{\ \ オ\ \ }}$の解答群
⓪$\angle AED$ ①$\angle ADE$ ②$\angle BOE$ ③$\angle DEG$ ④$\angle EOH$
$\boxed{\boxed{\ \ カ\ \ }}$の解答群
⓪A ①D ②E ③F
(2) 円Oに対して、(1)の手順1とは直線lの引き方を変え、次の手順2で作図を行う。
[手順2]
(Step 1) 円Oと共有点をもたない直線lを引く。中心Oから直線lに垂直な直線を引き、直線lとの交点をPとする。
(Step 2) 円Oの周上に、点Qを$\angle POQ$が鈍角となるようにとる。直線PQを引き、円Oとの交点でQとは異なる点をRとする。
(Step 3) 点Qを通り直線OPに垂直な直線を引き、円Oとの交点でQとは異なる点をSとする。
(Step 4) 点Sにおける円Oの接線を引き、直線lとの交点をTとする。
このとき、$\angle PTS=\boxed{\boxed{\ \ キ\ \ }}$である。
円Oの半径が$\sqrt 5$で、OT=$3\sqrt 6$であったとすると、3点O, P, Rを通る円の半径は$\frac{\boxed{\ \ ク\ \ }\sqrt{\boxed{\ \ ケ\ \ }}}{\boxed{\ \ コ\ \ }}$であり、RT=$\boxed{\ \ サ\ \ }$である。
$\boxed{\boxed{\ \ キ\ \ }}$の解答群
⓪$\angle PQS$ ①$\angle PST$ ②$\angle QPS$ ③$\angle QRS$ ④$\angle SRT$
2023共通テスト過去問
福田の1.5倍速演習〜合格する重要問題066〜九州大学2017年度理系第3問〜等差数列の7の倍数になる項の個数
単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#九州大学#数B
指導講師:
福田次郎
問題文全文(内容文):
$\Large{\boxed{3}}$ 初項$a_1=1$, 公差4の等差数列$\left\{a_n\right\}$を考える。以下の問いに答えよ。
(1) $\left\{a_n\right\}$の初項から第600項のうち、7の倍数である項の個数を求めよ。
(2) $\left\{a_n\right\}$の初項から第600項のうち、$7^2$の倍数である項の個数を求めよ。
(3) 初項から第n項までの積$a_1a_2\cdots a_n$が$7^{45}$の倍数となる最小の自然数nを求めよ。
2017九州大学理系過去問
この動画を見る
$\Large{\boxed{3}}$ 初項$a_1=1$, 公差4の等差数列$\left\{a_n\right\}$を考える。以下の問いに答えよ。
(1) $\left\{a_n\right\}$の初項から第600項のうち、7の倍数である項の個数を求めよ。
(2) $\left\{a_n\right\}$の初項から第600項のうち、$7^2$の倍数である項の個数を求めよ。
(3) 初項から第n項までの積$a_1a_2\cdots a_n$が$7^{45}$の倍数となる最小の自然数nを求めよ。
2017九州大学理系過去問
福田の1.5倍速演習〜合格する重要問題065〜中央大学2019年度理工学部第3問〜反復試行と確率漸化式
単元:
#数A#大学入試過去問(数学)#場合の数と確率#確率#数列#数列とその和(等差・等比・階差・Σ)#漸化式#学校別大学入試過去問解説(数学)#中央大学#数学(高校生)#数B
指導講師:
福田次郎
問題文全文(内容文):
$\boxed{3}$ Oを原点とする平面上の動点Rが$R_0$(1, 0)から出発して、単位円の周上を1秒ごとに反時計周りに移動する。移動するときの動径ORの回転角は、確率$\frac{1}{2}$で$\frac{\pi}{6}$、確率$\frac{1}{2}$で$\frac{\pi}{3}$である。n秒後のRの位置を$R_n$とする。以下の問いに答えよ。
(1)$R_5$が(-1, 0)である確率を求めよ。
(2)$R_9$がx軸上にある確率を求めよ。
次に、$R_n$がx軸上またはy軸上にある確率を$p_n$(n≧1)とする。
(3)$p_{n+1}$を$p_n$を用いて表せ。
(4)$p_n$を求めよ。
2019中央大学理工学部過去問
この動画を見る
$\boxed{3}$ Oを原点とする平面上の動点Rが$R_0$(1, 0)から出発して、単位円の周上を1秒ごとに反時計周りに移動する。移動するときの動径ORの回転角は、確率$\frac{1}{2}$で$\frac{\pi}{6}$、確率$\frac{1}{2}$で$\frac{\pi}{3}$である。n秒後のRの位置を$R_n$とする。以下の問いに答えよ。
(1)$R_5$が(-1, 0)である確率を求めよ。
(2)$R_9$がx軸上にある確率を求めよ。
次に、$R_n$がx軸上またはy軸上にある確率を$p_n$(n≧1)とする。
(3)$p_{n+1}$を$p_n$を用いて表せ。
(4)$p_n$を求めよ。
2019中央大学理工学部過去問
福田の数学〜2023年共通テスト速報〜数学IA第4問整数〜長方形のタイルを並べて長方形を作る
単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)#大学入試解答速報#数学#共通テスト
指導講師:
福田次郎
問題文全文(内容文):
第4問
色のついた長方形を並べて正方形や長方形を作ることを考える。色のついた長方形は、向きを変えずにすき間なく並べることとし、色のついた長方形は十分あるものとする。
(1)横の長さが462で縦の長さが110である赤い長方形を、図1(※動画参照)のように並べて正方形や長方形を作ることを考える。
462と110の両方を割り切る素数のうち最大のものは$\boxed{\ \ アイ\ \ }$である。
赤い長方形を並べて作ることができる正方形のうち、辺の長さが最小であるものは、一辺の長さが$\boxed{\ \ ウエオカ\ \ }$のものである。
また、赤い長方形を並べて正方形ではない長方形を作るとき、横の長さと縦の長さの差の絶対値が最小になるのは、462の約数と110の約数を考えると、差の絶対値が$\boxed{\ \ キク\ \ }$になるときであることがわかる。
縦の長さが横の長さより$\boxed{\ \ キク\ \ }$長い長方形のうち、横の長さが最小であるものは、横の長さが$\boxed{\ \ ケコサシ\ \ }$のものである。
(2)花子さんと太郎さんは、(1)で用いた赤い長方形を1枚以上並べて長方形を作り、その右側に横の長さが363で縦の長さが154である青い長方形を1枚以上並べて、図2(※動画参照)のような正方形や長方形を作ることを考えている。
このとき、赤い長方形を並べてできる長方形の縦の長さと、青い長方形を並べてできる長方形の縦の長さは等しい。よって、図2のような長方形のうち、縦の長さが最小のものは、縦の長さが$\boxed{\ \ スセソ\ \ }$のものであり、図2のような長方形は縦の長さが$\boxed{\ \ スセソ\ \ }$の倍数である。
二人は、次のように話している。
花子:赤い長方形と青い長方形を図2のように並べて正方形を作ってみようよ。
太郎:赤い長方形の横の長さが462で青い長方形の横の長さが363だから、図2のような正方形の横の長さは462と363を組み合わせて作ることができる長さでないといけないね。
花子:正方形だから、横の長さは$\boxed{\ \ スセソ\ \ }$の倍数でもないといけないね。
462と363の最大公約数は$\boxed{\ \ タチ\ \ }$であり、$\boxed{\ \ タチ\ \ }$の倍数のうちで$\boxed{\ \ スセソ\ \ }$の倍数でもある最小の正の整数は$\boxed{\ \ ツテトナ\ \ }$である。
これらのことと、使う長方形の枚数が赤い長方形も青い長方形も1枚以上であることから、図2のような正方形のうち、辺の長さが最小であるものは、一辺の長さが$\boxed{\ \ ニヌネノ\ \ }$のものであることがわかる。
2023共通テスト過去問
この動画を見る
第4問
色のついた長方形を並べて正方形や長方形を作ることを考える。色のついた長方形は、向きを変えずにすき間なく並べることとし、色のついた長方形は十分あるものとする。
(1)横の長さが462で縦の長さが110である赤い長方形を、図1(※動画参照)のように並べて正方形や長方形を作ることを考える。
462と110の両方を割り切る素数のうち最大のものは$\boxed{\ \ アイ\ \ }$である。
赤い長方形を並べて作ることができる正方形のうち、辺の長さが最小であるものは、一辺の長さが$\boxed{\ \ ウエオカ\ \ }$のものである。
また、赤い長方形を並べて正方形ではない長方形を作るとき、横の長さと縦の長さの差の絶対値が最小になるのは、462の約数と110の約数を考えると、差の絶対値が$\boxed{\ \ キク\ \ }$になるときであることがわかる。
縦の長さが横の長さより$\boxed{\ \ キク\ \ }$長い長方形のうち、横の長さが最小であるものは、横の長さが$\boxed{\ \ ケコサシ\ \ }$のものである。
(2)花子さんと太郎さんは、(1)で用いた赤い長方形を1枚以上並べて長方形を作り、その右側に横の長さが363で縦の長さが154である青い長方形を1枚以上並べて、図2(※動画参照)のような正方形や長方形を作ることを考えている。
このとき、赤い長方形を並べてできる長方形の縦の長さと、青い長方形を並べてできる長方形の縦の長さは等しい。よって、図2のような長方形のうち、縦の長さが最小のものは、縦の長さが$\boxed{\ \ スセソ\ \ }$のものであり、図2のような長方形は縦の長さが$\boxed{\ \ スセソ\ \ }$の倍数である。
二人は、次のように話している。
花子:赤い長方形と青い長方形を図2のように並べて正方形を作ってみようよ。
太郎:赤い長方形の横の長さが462で青い長方形の横の長さが363だから、図2のような正方形の横の長さは462と363を組み合わせて作ることができる長さでないといけないね。
花子:正方形だから、横の長さは$\boxed{\ \ スセソ\ \ }$の倍数でもないといけないね。
462と363の最大公約数は$\boxed{\ \ タチ\ \ }$であり、$\boxed{\ \ タチ\ \ }$の倍数のうちで$\boxed{\ \ スセソ\ \ }$の倍数でもある最小の正の整数は$\boxed{\ \ ツテトナ\ \ }$である。
これらのことと、使う長方形の枚数が赤い長方形も青い長方形も1枚以上であることから、図2のような正方形のうち、辺の長さが最小であるものは、一辺の長さが$\boxed{\ \ ニヌネノ\ \ }$のものであることがわかる。
2023共通テスト過去問
福田の1.5倍速演習〜合格する重要問題064〜明治大学2019年度理工学部第2問〜円と放物線の位置関係
単元:
#数Ⅱ#図形と方程式#円と方程式#数学(高校生)#大学入試解答速報#数学#明治大学
指導講師:
福田次郎
問題文全文(内容文):
$\boxed{2}$ a,bは実数でa>0とする。座標平面上において、円$x^2$+$y^2$=1を$C$とし、放物線y=a$x^2$+bを$D$とする。
(1)放物線$D$の頂点のy座標が正であり、円$C$と放物線$D$の共有点がただ一つであるとき、bの値は$\boxed{\ \ あ\ \ }$である。
(2)放物線$D$の頂点のy座標が負であり、円$C$と放物線$D$の共有点がただ一つであるとき、bの値は$\boxed{\ \ い\ \ }$であり、aの取り得る値の範囲は$\boxed{\ \ う\ \ }$である。
(3)放物線$D$の頂点が円$C$の内部にあり、円$C$と放物線$D$がちょうど2つの共有点をもつとき、bの取り得る値の範囲は$\boxed{\ \ え\ \ }$である。
(4)放物線$D$の頂点が円$C$の外部にあり、円$C$と放物線$D$がちょうど2つの共有点をもつとき、bをaの式で表すとb=$\boxed{\ \ お\ \ }$となり、aの取り得る値の範囲は$\boxed{\ \ か\ \ }$である。
2019明治大学理工学部過去問
この動画を見る
$\boxed{2}$ a,bは実数でa>0とする。座標平面上において、円$x^2$+$y^2$=1を$C$とし、放物線y=a$x^2$+bを$D$とする。
(1)放物線$D$の頂点のy座標が正であり、円$C$と放物線$D$の共有点がただ一つであるとき、bの値は$\boxed{\ \ あ\ \ }$である。
(2)放物線$D$の頂点のy座標が負であり、円$C$と放物線$D$の共有点がただ一つであるとき、bの値は$\boxed{\ \ い\ \ }$であり、aの取り得る値の範囲は$\boxed{\ \ う\ \ }$である。
(3)放物線$D$の頂点が円$C$の内部にあり、円$C$と放物線$D$がちょうど2つの共有点をもつとき、bの取り得る値の範囲は$\boxed{\ \ え\ \ }$である。
(4)放物線$D$の頂点が円$C$の外部にあり、円$C$と放物線$D$がちょうど2つの共有点をもつとき、bをaの式で表すとb=$\boxed{\ \ お\ \ }$となり、aの取り得る値の範囲は$\boxed{\ \ か\ \ }$である。
2019明治大学理工学部過去問
福田の数学〜2023年共通テスト速報〜数学IA第3問場合の数
単元:
#数A#場合の数と確率#場合の数#数学(高校生)#大学入試解答速報#数学#共通テスト
指導講師:
福田次郎
問題文全文(内容文):
第3問
番号によって区別された複数の球が、何本かのひもでつながれている。ただし、各ひもはその両端で二つの球をつなぐものとする。次の条件を満たす球の塗り分け方(以下、球の塗り方)を考える。
【条件】
・それぞれの球を、用意した5色(赤、青、黄、緑、紫)のうちのいずれか1色で塗る。
・1本のひもでつながれた二つの球は異なる色になるようにする。
・同じ色を何回使ってもよく、また使わない色があってもよい。
例えば図A(※動画参照)では、三つの球が2本のひもでつながれている。この三つの球を塗るとき、球1の塗り方が5通りあり、球1を塗った後、球2の塗り方は4通りあり、さらに球3の塗り方は4通りある。したがって、球の塗り方の総数は80である。
(1)図B(※動画参照)において、球の塗り方は$\boxed{\ \ アイウ\ \ }$通りある。
(2)図C(※動画参照)において、球の塗り方は$\boxed{\ \ エオ\ \ }$通りある。
(3)図D(※動画参照)における球の塗り方のうち、赤をちょうど2回使う塗り方は$\boxed{\ \ カキ\ \ }$通りある。
(4)図E(※動画参照)における球の塗り方のうち、赤をちょうど3回使い、かつ青をちょうど2回使う塗り方は$\boxed{\ \ クケ\ \ }$通りある。
(5)図Dにおいて、球の塗り方の総数を求める。
そのために、次の構想を立てる。
【構想】
図Dと図Fを比較する。
図Fでは球3と球4が同色になる球の塗り方が可能であるため、図Dよりも図Fの球の塗り方の総数の方が大きい。
図Fにおける球の塗り方は、図Bにおける球の塗り方と同じであるため、全部で$\boxed{\ \ アイウ\ \ }$通りある。そのうち球3と球4が同色になる球の塗り方の総数と一致する図として、後の⓪~④のうち、正しいものは$\boxed{\boxed{\ \ コ\ \ }}$である。したがって、図Dにおける球の塗り方は$\boxed{\ \ サシス\ \ }$通りある。
$\boxed{\boxed{\ \ コ\ \ }}$の解答群
(解答群は動画参照)
(6)図Gにおいて、球の塗り方は$\boxed{\ \ セソタチ\ \ }$通りある。
2023共通テスト過去問
この動画を見る
第3問
番号によって区別された複数の球が、何本かのひもでつながれている。ただし、各ひもはその両端で二つの球をつなぐものとする。次の条件を満たす球の塗り分け方(以下、球の塗り方)を考える。
【条件】
・それぞれの球を、用意した5色(赤、青、黄、緑、紫)のうちのいずれか1色で塗る。
・1本のひもでつながれた二つの球は異なる色になるようにする。
・同じ色を何回使ってもよく、また使わない色があってもよい。
例えば図A(※動画参照)では、三つの球が2本のひもでつながれている。この三つの球を塗るとき、球1の塗り方が5通りあり、球1を塗った後、球2の塗り方は4通りあり、さらに球3の塗り方は4通りある。したがって、球の塗り方の総数は80である。
(1)図B(※動画参照)において、球の塗り方は$\boxed{\ \ アイウ\ \ }$通りある。
(2)図C(※動画参照)において、球の塗り方は$\boxed{\ \ エオ\ \ }$通りある。
(3)図D(※動画参照)における球の塗り方のうち、赤をちょうど2回使う塗り方は$\boxed{\ \ カキ\ \ }$通りある。
(4)図E(※動画参照)における球の塗り方のうち、赤をちょうど3回使い、かつ青をちょうど2回使う塗り方は$\boxed{\ \ クケ\ \ }$通りある。
(5)図Dにおいて、球の塗り方の総数を求める。
そのために、次の構想を立てる。
【構想】
図Dと図Fを比較する。
図Fでは球3と球4が同色になる球の塗り方が可能であるため、図Dよりも図Fの球の塗り方の総数の方が大きい。
図Fにおける球の塗り方は、図Bにおける球の塗り方と同じであるため、全部で$\boxed{\ \ アイウ\ \ }$通りある。そのうち球3と球4が同色になる球の塗り方の総数と一致する図として、後の⓪~④のうち、正しいものは$\boxed{\boxed{\ \ コ\ \ }}$である。したがって、図Dにおける球の塗り方は$\boxed{\ \ サシス\ \ }$通りある。
$\boxed{\boxed{\ \ コ\ \ }}$の解答群
(解答群は動画参照)
(6)図Gにおいて、球の塗り方は$\boxed{\ \ セソタチ\ \ }$通りある。
2023共通テスト過去問
福田の1.5倍速演習〜合格する重要問題063〜早稲田大学2019年度理工学部第3問〜ガウス記号と極限
単元:
#大学入試過去問(数学)#関数と極限#関数の極限#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
$\boxed{3}$ 実数xに対し、[x]をx-1<[x]≦xを満たす整数とする。次の極限を求めよ。
(1)$\displaystyle\lim_{n \to \infty}\frac{1}{n}\left[\frac{1}{\sin\frac{1}{n}}\right]$
(2)$\displaystyle\lim_{n \to \infty}\frac{1}{n\sqrt n}(1+[\sqrt 2]+[\sqrt 3]+\cdots+[\sqrt n])$
2019早稲田大学理工学部過去問
この動画を見る
$\boxed{3}$ 実数xに対し、[x]をx-1<[x]≦xを満たす整数とする。次の極限を求めよ。
(1)$\displaystyle\lim_{n \to \infty}\frac{1}{n}\left[\frac{1}{\sin\frac{1}{n}}\right]$
(2)$\displaystyle\lim_{n \to \infty}\frac{1}{n\sqrt n}(1+[\sqrt 2]+[\sqrt 3]+\cdots+[\sqrt n])$
2019早稲田大学理工学部過去問
福田の数学〜2023年共通テスト速報〜数学IA第2問データの分析と2次関数
単元:
#数Ⅰ#2次関数#データの分析#2次関数とグラフ#データの分析#数学(高校生)#大学入試解答速報#数学#共通テスト
指導講師:
福田次郎
問題文全文(内容文):
第2問
[1]太郎さんは総務省が公表している2020年の家計調査の結果を用いて、地域による食文化の違いについて考えている。家計調査における調査地点は、都道府県庁所在市および政令指定都市(都道府県庁所在市を除く)であり、合計52市である。家計調査の結果の中でも、スーパーマーケットなどで販売されている調理食品の「二人以上の世帯の1世帯当たり年間支出金額(以下、支出金額、単位は円)」を分析することにした。以下においては、52市の調理食品の支出金額をデータとして用いる。
太郎さんは調理食品として、最初にうなぎのかば焼き(以下、かば焼き)に着目し、図1のように(※動画参照)52市におけるかば焼きの支出金額のヒストグラムを作成した。
ただし、ヒストグラムの各階級の区間は、左側の数値を含み、右側の数値を含まない。
なお、以下の図や表については、総務省のWebページをもとに作成している。
(1)図1から次のことが読み取れる。
・第1四分位数が含まれる階級は$\boxed{\boxed{\ \ ア\ \ }}$である。
・第3四分位数が含まれる階級は$\boxed{\boxed{\ \ イ\ \ }}$である。
・四分位範囲は$\boxed{\boxed{\ \ ウ\ \ }}$。
$\boxed{\boxed{\ \ ア\ \ }}$、$\boxed{\boxed{\ \ イ\ \ }}$の解答群(同じものを繰り返し選んでもよい。)
⓪1000以上1400未満 ①1400以上1800未満
②1800以上2200未満 ③2200以上2600未満
④2600以上3000未満 ⑤3000以上3400未満
⑥3400以上3800未満 ⑦3800以上4200未満
⑧4200以上4600未満 ⑨4600以上5000未満
$\boxed{\boxed{\ \ ウ\ \ }}$の解答群
⓪800より小さい
①800より大きく1600より小さい
②1600より大きく2400より小さい
③2400より大きく3200より小さい
④3200より大きく4000より小さい
⑤4000より大きい
(2)太郎さんは、東西での地域による食文化の違いを調べるために、52市を東側の地域E(19市)と西側の地域W(33市)の二つに分けて考えることにした。
(i)地域Eと地域Wについて、かば焼きの支出金額の箱ひげ図を、図2,図3のように(※動画参照)それぞれ作成した。
かば焼きの支出金額について、図2と図3から読み取れることとして、次の⓪~③のうち、
正しいものは$\boxed{\boxed{\ \ エ\ \ }}$である。
$\boxed{\boxed{\ \ エ\ \ }}$の解答群
⓪地域Eにおいて、小さい方から5番目は2000以下である。
①地域Eと地域Wの範囲は等しい。
②中央値は、地域Eより地域Wの方が大きい。
③2600未満の市の割合は、地域Eより地域Wの方が大きい。
(ii)太郎さんは、地域Eと地域Wのデータの散らばりの度合いを数値でとらえようと思い、
それぞれの分散を考えることにした。地域Eにおけるかば焼きの支出金額の分散は、地域Eのそれぞれの市におけるかば焼きの支出金額の偏差の$\boxed{\boxed{\ \ オ\ \ }}$である。
$\boxed{\boxed{\ \ オ\ \ }}$の解答群
⓪2乗を合計した値
①絶対値を合計した値
②2乗を合計して地域Eのの市の数で割った値
③絶対値を合計して地域Eの市の数で割った値
④2乗を合計して地域Eの市の数で割った値の平方根のうち正のもの
⑤絶対値を合計して地域Eの市の数で割った値の平方根のうち正のもの
(3)太郎さんは、(2)で考えた地域Eにおける、やきとりの支出金額についても調べることにした。
ここでは地域Eにおいて、やきとりの支出金額が増加すれば、かば焼きの支出金額も増加する傾向があるのではないかと考え、まず図4(※動画参照)のように、地域Eにおける、やきとりとかば焼きの支出金額の散布図を作成した。そして、相関係数を計算するために、表1(※動画参照)のように平均値、分散、標準偏差および共分散を算出した。ただし、共分散は地域Eのそれぞれの市における、やきとりの支出金額の偏差とかば焼きの支出金額の偏差との積の平均値である。
表1を用いると、地域Eにおける、やきとりの支出金額とかば焼きの支出金額の相関係数は$\boxed{\boxed{\ \ カ\ \ }}$である。
$\boxed{\boxed{\ \ カ\ \ }}$については、最も適当なものを、次の⓪~⑨のうちから一つ選べ。
⓪-0.62 ①-0.50②-0.37③-0.19
④-0.02⑤0.02⑥0.19⑦0.37
⑧0.50⑨0.62
[2]太郎さんと花子さんは、バスケットボールのプロ選手の中には、リングと同じ高さでシュートを打てる人がいることを知り、シュートを打つ高さによってボールの軌道がどう変わるかについて考えている。
二人は、図1(※動画参照)のように座標軸が定められた平面上に、プロ選手と花子さんがシュートを打つ様子を真横から見た図を描き、ボールがリング入った場合について、後の仮定を設定して考えることにした。長さの単位はメートルであるが、以下では省略する。
【仮定】
・平面上では、ボールを直径0.2の円とする。
・リングを真横から見たときの左端を点A(3.8, 3),右端を点B(4.2, 3)とし、リングの太さは無視する。
・ボールがリングや他のものに当たらずに上からリングを通り、かつ、ボールの中心がABの中点M(4, 3)を通る場合を考える。ただし、ボールがリングに当たるとは、ボールの中心とAまたはBとの距離が0.1以下になることとする。
・プロ選手がシュートを打つ場合のボールの中心を点Pとし、Pは、はじめに点$P_0$(0, 3)にあるものとする。また、$P_0$,Mを通る、上に凸の放物線を$C_1$とし、Pは$C_1$上を動くものとする。
・花子さんがシュートを打つ場合のボールの中心を点Hとし、Hは、はじめに点$H_0$(0, 2)にあるものとする。また、$H_0$, Mを通る、上に凸の放物線を$C_2$とし、Hは$C_2$上を動くものとする。
・放物線$C_1$や$C_2$に対して、頂点のy座標を「シュートの高さ」とし、頂点のx座標を「ボールが最も高くなるときの地上の位置」とする。
(1)放物線$C_1$の方程式における$x^2$の係数をaとする。放物線$C_1$の方程式は
y=a$x^2$-$\boxed{\ \ キ\ \ }$ax+$\boxed{\ \ ク\ \ }$
と表すことができる。また、プロ選手の「シュートの高さ」は
-$\boxed{\ \ ケ\ \ }$a+$\boxed{\ \ コ\ \ }$
である。
放物線$C_2$の方程式における$x^2$の係数をpとする。放物線$C_2$の方程式は
y=p$\left\{x-\left(2-\frac{1}{8p}\right)\right\}^2-\frac{(16p-1)^2}{64p}+2$
と表すことができる。
プロ選手と花子さんの「ボールが最も高くなるときの地上の位置」の比較の記述として、次の⓪~③のうち、正しいものは$\boxed{\boxed{\ \ サ\ \ }}$である。
$\boxed{\boxed{\ \ サ\ \ }}$の解答群
⓪プロ選手と花子さんの「ボールが最も高くなる時の地上の位置」は、常に一致する。
①プロ選手の「ボールが最も高くなるときの地上の位置」の方が、常にMのx座標に近い。
②花子選手の「ボールが最も高くなるときの地上の位置」の方が、常にMのx座標に近い。
③プロ選手の「ボールが最も高くなるときの地上の位置」の方がMのx座標に近いときもあれば、花子さんの「ボールが最も高くなるときの地上の位置」の方が、Mのx座標に近いときもある。
(2)二人は、ボールがリングすれすれを通る場合のプロ選手と花子さんの「シュートの高さ」について次のように話している。
太郎:例えば、プロ選手のボールがリングに当たらないようにするには、Pがリングの左端Aのどのくらい上を通れば良いのかな。
花子:Aの真上の点でPが通る点Dを、線分DMがAを中心とする半径0.1の円と接するようにとって考えてみたらどうかな。
太郎:なるほど。Pの軌道は上に凸の放物線で山なりだから、その場合、図2(※動画参照)のように、PはDを通った後で線分DMより上側を通るのでボールはリングに当たらないね。花子さんの場合も、HがこのDを通れば、ボールはリングに当たらないね。
花子:放物線$C_1$と$C_2$がDを通る場合でプロ選手と私の「シュートの高さ」を比べってみようよ。
図2のように、Mを通る直線lが、Aを中心とする半径0.1の円に直線ABの上側で接しているとする。また、Aを通り直線ABに垂直な直線を引き、lとの交点をDとする。このとき、AD=$\frac{\sqrt 3}{15}$である。
よって、放物線$C_1$がDを通るとき、$C_1$の方程式は
y=-$\frac{\boxed{\ \ シ\ \ }\sqrt{\boxed{\ \ ス\ \ }}}{\boxed{\ \ セソ\ \ }}\left(x^2-\boxed{\ \ キ\ \ }x\right)+\boxed{\ \ ク\ \ }$
となる。
2023共通テスト過去問
この動画を見る
第2問
[1]太郎さんは総務省が公表している2020年の家計調査の結果を用いて、地域による食文化の違いについて考えている。家計調査における調査地点は、都道府県庁所在市および政令指定都市(都道府県庁所在市を除く)であり、合計52市である。家計調査の結果の中でも、スーパーマーケットなどで販売されている調理食品の「二人以上の世帯の1世帯当たり年間支出金額(以下、支出金額、単位は円)」を分析することにした。以下においては、52市の調理食品の支出金額をデータとして用いる。
太郎さんは調理食品として、最初にうなぎのかば焼き(以下、かば焼き)に着目し、図1のように(※動画参照)52市におけるかば焼きの支出金額のヒストグラムを作成した。
ただし、ヒストグラムの各階級の区間は、左側の数値を含み、右側の数値を含まない。
なお、以下の図や表については、総務省のWebページをもとに作成している。
(1)図1から次のことが読み取れる。
・第1四分位数が含まれる階級は$\boxed{\boxed{\ \ ア\ \ }}$である。
・第3四分位数が含まれる階級は$\boxed{\boxed{\ \ イ\ \ }}$である。
・四分位範囲は$\boxed{\boxed{\ \ ウ\ \ }}$。
$\boxed{\boxed{\ \ ア\ \ }}$、$\boxed{\boxed{\ \ イ\ \ }}$の解答群(同じものを繰り返し選んでもよい。)
⓪1000以上1400未満 ①1400以上1800未満
②1800以上2200未満 ③2200以上2600未満
④2600以上3000未満 ⑤3000以上3400未満
⑥3400以上3800未満 ⑦3800以上4200未満
⑧4200以上4600未満 ⑨4600以上5000未満
$\boxed{\boxed{\ \ ウ\ \ }}$の解答群
⓪800より小さい
①800より大きく1600より小さい
②1600より大きく2400より小さい
③2400より大きく3200より小さい
④3200より大きく4000より小さい
⑤4000より大きい
(2)太郎さんは、東西での地域による食文化の違いを調べるために、52市を東側の地域E(19市)と西側の地域W(33市)の二つに分けて考えることにした。
(i)地域Eと地域Wについて、かば焼きの支出金額の箱ひげ図を、図2,図3のように(※動画参照)それぞれ作成した。
かば焼きの支出金額について、図2と図3から読み取れることとして、次の⓪~③のうち、
正しいものは$\boxed{\boxed{\ \ エ\ \ }}$である。
$\boxed{\boxed{\ \ エ\ \ }}$の解答群
⓪地域Eにおいて、小さい方から5番目は2000以下である。
①地域Eと地域Wの範囲は等しい。
②中央値は、地域Eより地域Wの方が大きい。
③2600未満の市の割合は、地域Eより地域Wの方が大きい。
(ii)太郎さんは、地域Eと地域Wのデータの散らばりの度合いを数値でとらえようと思い、
それぞれの分散を考えることにした。地域Eにおけるかば焼きの支出金額の分散は、地域Eのそれぞれの市におけるかば焼きの支出金額の偏差の$\boxed{\boxed{\ \ オ\ \ }}$である。
$\boxed{\boxed{\ \ オ\ \ }}$の解答群
⓪2乗を合計した値
①絶対値を合計した値
②2乗を合計して地域Eのの市の数で割った値
③絶対値を合計して地域Eの市の数で割った値
④2乗を合計して地域Eの市の数で割った値の平方根のうち正のもの
⑤絶対値を合計して地域Eの市の数で割った値の平方根のうち正のもの
(3)太郎さんは、(2)で考えた地域Eにおける、やきとりの支出金額についても調べることにした。
ここでは地域Eにおいて、やきとりの支出金額が増加すれば、かば焼きの支出金額も増加する傾向があるのではないかと考え、まず図4(※動画参照)のように、地域Eにおける、やきとりとかば焼きの支出金額の散布図を作成した。そして、相関係数を計算するために、表1(※動画参照)のように平均値、分散、標準偏差および共分散を算出した。ただし、共分散は地域Eのそれぞれの市における、やきとりの支出金額の偏差とかば焼きの支出金額の偏差との積の平均値である。
表1を用いると、地域Eにおける、やきとりの支出金額とかば焼きの支出金額の相関係数は$\boxed{\boxed{\ \ カ\ \ }}$である。
$\boxed{\boxed{\ \ カ\ \ }}$については、最も適当なものを、次の⓪~⑨のうちから一つ選べ。
⓪-0.62 ①-0.50②-0.37③-0.19
④-0.02⑤0.02⑥0.19⑦0.37
⑧0.50⑨0.62
[2]太郎さんと花子さんは、バスケットボールのプロ選手の中には、リングと同じ高さでシュートを打てる人がいることを知り、シュートを打つ高さによってボールの軌道がどう変わるかについて考えている。
二人は、図1(※動画参照)のように座標軸が定められた平面上に、プロ選手と花子さんがシュートを打つ様子を真横から見た図を描き、ボールがリング入った場合について、後の仮定を設定して考えることにした。長さの単位はメートルであるが、以下では省略する。
【仮定】
・平面上では、ボールを直径0.2の円とする。
・リングを真横から見たときの左端を点A(3.8, 3),右端を点B(4.2, 3)とし、リングの太さは無視する。
・ボールがリングや他のものに当たらずに上からリングを通り、かつ、ボールの中心がABの中点M(4, 3)を通る場合を考える。ただし、ボールがリングに当たるとは、ボールの中心とAまたはBとの距離が0.1以下になることとする。
・プロ選手がシュートを打つ場合のボールの中心を点Pとし、Pは、はじめに点$P_0$(0, 3)にあるものとする。また、$P_0$,Mを通る、上に凸の放物線を$C_1$とし、Pは$C_1$上を動くものとする。
・花子さんがシュートを打つ場合のボールの中心を点Hとし、Hは、はじめに点$H_0$(0, 2)にあるものとする。また、$H_0$, Mを通る、上に凸の放物線を$C_2$とし、Hは$C_2$上を動くものとする。
・放物線$C_1$や$C_2$に対して、頂点のy座標を「シュートの高さ」とし、頂点のx座標を「ボールが最も高くなるときの地上の位置」とする。
(1)放物線$C_1$の方程式における$x^2$の係数をaとする。放物線$C_1$の方程式は
y=a$x^2$-$\boxed{\ \ キ\ \ }$ax+$\boxed{\ \ ク\ \ }$
と表すことができる。また、プロ選手の「シュートの高さ」は
-$\boxed{\ \ ケ\ \ }$a+$\boxed{\ \ コ\ \ }$
である。
放物線$C_2$の方程式における$x^2$の係数をpとする。放物線$C_2$の方程式は
y=p$\left\{x-\left(2-\frac{1}{8p}\right)\right\}^2-\frac{(16p-1)^2}{64p}+2$
と表すことができる。
プロ選手と花子さんの「ボールが最も高くなるときの地上の位置」の比較の記述として、次の⓪~③のうち、正しいものは$\boxed{\boxed{\ \ サ\ \ }}$である。
$\boxed{\boxed{\ \ サ\ \ }}$の解答群
⓪プロ選手と花子さんの「ボールが最も高くなる時の地上の位置」は、常に一致する。
①プロ選手の「ボールが最も高くなるときの地上の位置」の方が、常にMのx座標に近い。
②花子選手の「ボールが最も高くなるときの地上の位置」の方が、常にMのx座標に近い。
③プロ選手の「ボールが最も高くなるときの地上の位置」の方がMのx座標に近いときもあれば、花子さんの「ボールが最も高くなるときの地上の位置」の方が、Mのx座標に近いときもある。
(2)二人は、ボールがリングすれすれを通る場合のプロ選手と花子さんの「シュートの高さ」について次のように話している。
太郎:例えば、プロ選手のボールがリングに当たらないようにするには、Pがリングの左端Aのどのくらい上を通れば良いのかな。
花子:Aの真上の点でPが通る点Dを、線分DMがAを中心とする半径0.1の円と接するようにとって考えてみたらどうかな。
太郎:なるほど。Pの軌道は上に凸の放物線で山なりだから、その場合、図2(※動画参照)のように、PはDを通った後で線分DMより上側を通るのでボールはリングに当たらないね。花子さんの場合も、HがこのDを通れば、ボールはリングに当たらないね。
花子:放物線$C_1$と$C_2$がDを通る場合でプロ選手と私の「シュートの高さ」を比べってみようよ。
図2のように、Mを通る直線lが、Aを中心とする半径0.1の円に直線ABの上側で接しているとする。また、Aを通り直線ABに垂直な直線を引き、lとの交点をDとする。このとき、AD=$\frac{\sqrt 3}{15}$である。
よって、放物線$C_1$がDを通るとき、$C_1$の方程式は
y=-$\frac{\boxed{\ \ シ\ \ }\sqrt{\boxed{\ \ ス\ \ }}}{\boxed{\ \ セソ\ \ }}\left(x^2-\boxed{\ \ キ\ \ }x\right)+\boxed{\ \ ク\ \ }$
となる。
2023共通テスト過去問
福田の1.5倍速演習〜合格する重要問題062〜早稲田大学2019年度人間科学部第1問〜球面と平面の交わりの円周上の点
単元:
#大学入試過去問(数学)#空間ベクトル#空間ベクトル#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数C
指導講師:
福田次郎
問題文全文(内容文):
$\boxed{5}$ 3点A(2,1,7), B(2,5,5), C(5,3,5)を含む平面α上を動く点Pがある。
この点Pは、原点O(0,0,0)との距離OP≦7√2 を満たすように動く。このとき、平面α上
でPが動きうる領域の面積は$\boxed{\ \ ツ\ \ }\pi$ である。また、点Q(16, 10, 6)と
点Pの距離PQの最小値は$\boxed{\ \ テ\ \ }\sqrt{\boxed{\ \ ト\ \ }}$である。
2019早稲田大学人間科学部過去問
この動画を見る
$\boxed{5}$ 3点A(2,1,7), B(2,5,5), C(5,3,5)を含む平面α上を動く点Pがある。
この点Pは、原点O(0,0,0)との距離OP≦7√2 を満たすように動く。このとき、平面α上
でPが動きうる領域の面積は$\boxed{\ \ ツ\ \ }\pi$ である。また、点Q(16, 10, 6)と
点Pの距離PQの最小値は$\boxed{\ \ テ\ \ }\sqrt{\boxed{\ \ ト\ \ }}$である。
2019早稲田大学人間科学部過去問
福田の数学〜2023年共通テスト速報〜数学IA第1問不等式の解と図形の計量
単元:
#数Ⅰ#数と式#図形と計量#一次不等式(不等式・絶対値のある方程式・不等式)#数学(高校生)#大学入試解答速報#数学#共通テスト
指導講師:
福田次郎
問題文全文(内容文):
第1問
[1]実数xについての不等式
|$x$+6| $\leqq$ 2
の解は
$\boxed{\ \ アイ\ \ } \leqq x \leqq \boxed{\ \ ウエ\ \ }$
である。
よって、実数$a,b,c,d$が
|(1-$\sqrt3$)($a-b$)($c-d$)+6| $\leqq$2
を満たしているとき、1-$\sqrt3$は負であることに注意すると、($a-b$)($c-d$)
の取り得る値の範囲は
$\boxed{\ \ オ\ \ }+\boxed{\ \ カ\ \ }\sqrt3 \leqq (a-b)(c-d) \leqq \boxed{\ \ キ\ \ }+\boxed{\ \ ク\ \ }\sqrt3$
であることがわかる。
特に
$(a-b)(c-d)=\boxed{\ \ キ\ \ }+\boxed{\ \ ク\ \ }\sqrt3 \cdots①$
であるとき、さらに
$(a-c)(b-d)=-3+\sqrt3 \cdots②$
が成り立つならば
$(a-d)(c-b)=\boxed{\ \ ケ\ \ }+\boxed{\ \ コ\ \ }\sqrt3 \cdots③$
であることが、等式①,②,③の左辺を展開して比較することによりわかる。
[2]
(1)点Oを中心とし、半径が5である円Oがある。この円周上に2点A,B
をAB=6となるようにとる。また、円Oの円周上に、2点A,Bとは異なる点Cをとる。
(i)$\sin\angle ACB=\boxed{\boxed{\ \ サ\ \ }}$である。また、点Cを\angle ACBが鈍角となるようにとるとき、$\cos\angle ACB=\boxed{\boxed{\ \ シ\ \ }}$である。
(ii)点Cを$\triangle ABC$の面積が最大となるようにとる。点Cから直線ABに垂直な直線を引き、直線ABとの交点をDとするとき、
$\tan\angle OAD=\boxed{\boxed{\ \ ス\ \ }}$である。また、$\triangle ABC$の面積は$\boxed{\ \ セソ\ \ }$である。
$\boxed{\boxed{\ \ サ\ \ }}$ ~ $\boxed{\boxed{\ \ ス\ \ }}$の解答群(同じものを繰り返し選んでもよい)
⓪$\displaystyle\frac{3}{5}$ ①$\displaystyle\frac{3}{4}$ ②$\displaystyle\frac{4}{5}$ ③ 1④$\displaystyle\frac{4}{3}$
⑤$-\displaystyle\frac{3}{5}$ ⑥$-\displaystyle\frac{3}{4}$ ⑦$-\displaystyle\frac{4}{5}$ ⑧ -1⑨$-\displaystyle\frac{4}{3}$
(2)半径が5である球Sがある。この球面上に3点P,Q,Rをとったとき、
これらの3点を通る平面α上でPQ=8, QR=5, RP=9であったとする。
球Sの球面上に点Tを三角錐TPQRの体積が最大となるようにとるとき、その体積を
求めよう。
まず、$\cos\angle QPR=\frac{\boxed{\ \ タ\ \ }}{\boxed{\ \ チ\ \ }}$である
ことから、$\triangle PQR$の面積は$\boxed{\ \ ツ\ \ }\sqrt{\boxed{\ \ テト\ \ }}$である。
次に、点Tから平面αに垂直な直線を引き、平面αとの交点をHとする。このとき、PH,QH,RHの長さについて、$\boxed{\boxed{\ \ ナ\ \ }}$が成り立つ。
以上より、三角錐TPQRの体積は$\boxed{\ \ ニヌ\ \ }\left(\sqrt{\boxed{\ \ ネノ\ \ }}+\sqrt{\boxed{\ \ ハ\ \ }}\right)$である。
$\boxed{\boxed{\ \ ナ\ \ }}$の解答群
⓪PH<QH<RH ①PH<RH<QH
②QH<PH<RH ③QH<RH<PH
④RH<PH<QH ⑤RH<QH<PH
⑥PH=QH=RH
2023共通テスト過去問
この動画を見る
第1問
[1]実数xについての不等式
|$x$+6| $\leqq$ 2
の解は
$\boxed{\ \ アイ\ \ } \leqq x \leqq \boxed{\ \ ウエ\ \ }$
である。
よって、実数$a,b,c,d$が
|(1-$\sqrt3$)($a-b$)($c-d$)+6| $\leqq$2
を満たしているとき、1-$\sqrt3$は負であることに注意すると、($a-b$)($c-d$)
の取り得る値の範囲は
$\boxed{\ \ オ\ \ }+\boxed{\ \ カ\ \ }\sqrt3 \leqq (a-b)(c-d) \leqq \boxed{\ \ キ\ \ }+\boxed{\ \ ク\ \ }\sqrt3$
であることがわかる。
特に
$(a-b)(c-d)=\boxed{\ \ キ\ \ }+\boxed{\ \ ク\ \ }\sqrt3 \cdots①$
であるとき、さらに
$(a-c)(b-d)=-3+\sqrt3 \cdots②$
が成り立つならば
$(a-d)(c-b)=\boxed{\ \ ケ\ \ }+\boxed{\ \ コ\ \ }\sqrt3 \cdots③$
であることが、等式①,②,③の左辺を展開して比較することによりわかる。
[2]
(1)点Oを中心とし、半径が5である円Oがある。この円周上に2点A,B
をAB=6となるようにとる。また、円Oの円周上に、2点A,Bとは異なる点Cをとる。
(i)$\sin\angle ACB=\boxed{\boxed{\ \ サ\ \ }}$である。また、点Cを\angle ACBが鈍角となるようにとるとき、$\cos\angle ACB=\boxed{\boxed{\ \ シ\ \ }}$である。
(ii)点Cを$\triangle ABC$の面積が最大となるようにとる。点Cから直線ABに垂直な直線を引き、直線ABとの交点をDとするとき、
$\tan\angle OAD=\boxed{\boxed{\ \ ス\ \ }}$である。また、$\triangle ABC$の面積は$\boxed{\ \ セソ\ \ }$である。
$\boxed{\boxed{\ \ サ\ \ }}$ ~ $\boxed{\boxed{\ \ ス\ \ }}$の解答群(同じものを繰り返し選んでもよい)
⓪$\displaystyle\frac{3}{5}$ ①$\displaystyle\frac{3}{4}$ ②$\displaystyle\frac{4}{5}$ ③ 1④$\displaystyle\frac{4}{3}$
⑤$-\displaystyle\frac{3}{5}$ ⑥$-\displaystyle\frac{3}{4}$ ⑦$-\displaystyle\frac{4}{5}$ ⑧ -1⑨$-\displaystyle\frac{4}{3}$
(2)半径が5である球Sがある。この球面上に3点P,Q,Rをとったとき、
これらの3点を通る平面α上でPQ=8, QR=5, RP=9であったとする。
球Sの球面上に点Tを三角錐TPQRの体積が最大となるようにとるとき、その体積を
求めよう。
まず、$\cos\angle QPR=\frac{\boxed{\ \ タ\ \ }}{\boxed{\ \ チ\ \ }}$である
ことから、$\triangle PQR$の面積は$\boxed{\ \ ツ\ \ }\sqrt{\boxed{\ \ テト\ \ }}$である。
次に、点Tから平面αに垂直な直線を引き、平面αとの交点をHとする。このとき、PH,QH,RHの長さについて、$\boxed{\boxed{\ \ ナ\ \ }}$が成り立つ。
以上より、三角錐TPQRの体積は$\boxed{\ \ ニヌ\ \ }\left(\sqrt{\boxed{\ \ ネノ\ \ }}+\sqrt{\boxed{\ \ ハ\ \ }}\right)$である。
$\boxed{\boxed{\ \ ナ\ \ }}$の解答群
⓪PH<QH<RH ①PH<RH<QH
②QH<PH<RH ③QH<RH<PH
④RH<PH<QH ⑤RH<QH<PH
⑥PH=QH=RH
2023共通テスト過去問
福田の1.5倍速演習〜合格する重要問題061〜早稲田大学2019年度社会科学部第1問〜円の通過範囲と放物線と円の位置関係
単元:
#数Ⅱ#大学入試過去問(数学)#図形と方程式#円と方程式#軌跡と領域#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#大学入試解答速報#数学
指導講師:
福田次郎
問題文全文(内容文):
$\Large{\boxed{1}}$ $k$を実数とする。座標平面において方程式
$x^2+y^2+x+(2k+1)y+k^2+1=0$
の表す図形$C$を考える。次の問いに答えよ。
(1)$C$が円であるような$k$の値の範囲を求めよ。ただし、点も円とみなすものとする。
(2)$k$が変化するとき、$C$が通る点($x,y$)の存在領域を座標平面上に図示せよ。
(3)(2)で求めた領域の境界線と(1)で求めた円が共有点をもたないような、$k$の値の
範囲を求めよ。
2019早稲田大学社会科学部過去問
この動画を見る
$\Large{\boxed{1}}$ $k$を実数とする。座標平面において方程式
$x^2+y^2+x+(2k+1)y+k^2+1=0$
の表す図形$C$を考える。次の問いに答えよ。
(1)$C$が円であるような$k$の値の範囲を求めよ。ただし、点も円とみなすものとする。
(2)$k$が変化するとき、$C$が通る点($x,y$)の存在領域を座標平面上に図示せよ。
(3)(2)で求めた領域の境界線と(1)で求めた円が共有点をもたないような、$k$の値の
範囲を求めよ。
2019早稲田大学社会科学部過去問
福田の1.5倍速演習〜合格する重要問題060〜早稲田大学2019年度教育学部第3問〜区分求積と極限
単元:
#大学入試過去問(数学)#関数と極限#積分とその応用#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
$\Large{\boxed{3}}$ (1)m,nを自然数とし、$n \geqq 2$とする。このとき、
$\log\left(1+\displaystyle\frac{n}{m}\right) \lt \displaystyle\sum_{k=m}^{m+n-1}\displaystyle\frac{1}{k} \lt \log\left(1+\displaystyle\frac{n}{m}\right)+\displaystyle\frac{n}{m(m+n)}$
を証明せよ。ただし、$\displaystyle\sum_{k=m}^{m+n-1}\displaystyle\frac{1}{k}=\displaystyle\frac{1}{m}+\displaystyle\frac{1}{m+1}+\cdots+\displaystyle\frac{1}{m+n-1}$とする。
(2)2以上の自然数$n$に対して
$a_n=\displaystyle\sum_{k=1}^n\frac{1}{(2n+k)(n+1-k)}$
$b_n=\displaystyle\frac{\log n}{n}$
とおく。$\displaystyle\lim_{n \to \infty}\frac{a_n}{b_n}$を求めよ。
2019早稲田大学教育学部過去問
この動画を見る
$\Large{\boxed{3}}$ (1)m,nを自然数とし、$n \geqq 2$とする。このとき、
$\log\left(1+\displaystyle\frac{n}{m}\right) \lt \displaystyle\sum_{k=m}^{m+n-1}\displaystyle\frac{1}{k} \lt \log\left(1+\displaystyle\frac{n}{m}\right)+\displaystyle\frac{n}{m(m+n)}$
を証明せよ。ただし、$\displaystyle\sum_{k=m}^{m+n-1}\displaystyle\frac{1}{k}=\displaystyle\frac{1}{m}+\displaystyle\frac{1}{m+1}+\cdots+\displaystyle\frac{1}{m+n-1}$とする。
(2)2以上の自然数$n$に対して
$a_n=\displaystyle\sum_{k=1}^n\frac{1}{(2n+k)(n+1-k)}$
$b_n=\displaystyle\frac{\log n}{n}$
とおく。$\displaystyle\lim_{n \to \infty}\frac{a_n}{b_n}$を求めよ。
2019早稲田大学教育学部過去問
福田の1.5倍速演習〜合格する重要問題059〜慶應義塾大学2019年度薬学部第1問(7)〜球に内接する四角錐の体積の最大値
単元:
#数A#数Ⅱ#大学入試過去問(数学)#図形の性質#周角と円に内接する四角形・円と接線・接弦定理#図形と方程式#円と方程式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\Large{\boxed{1}}$ (7)正四角錐ABCDEの全ての頂点は半径3の球面上にある。
この正四角錐の体積Vの最大値は$\boxed{\ \ ソ\ \ }$である。
2019慶應義塾大学薬学部過去問
この動画を見る
$\Large{\boxed{1}}$ (7)正四角錐ABCDEの全ての頂点は半径3の球面上にある。
この正四角錐の体積Vの最大値は$\boxed{\ \ ソ\ \ }$である。
2019慶應義塾大学薬学部過去問
福田の1.5倍速演習〜合格する重要問題058〜慶應義塾大学2019年度環境情報学部第5問〜正方形の中の内接外接する円の半径
単元:
#数A#数Ⅱ#大学入試過去問(数学)#図形の性質#周角と円に内接する四角形・円と接線・接弦定理#図形と方程式#円と方程式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\Large{\boxed{5}}$ 図のように(※動画参照)、1つの正方形の中に、半径の異なる3種類の円が合計10個配置されている。
円$A_1$と$A_2$は半径が同じRで、それぞれ図のように正方形の2辺に内接している。
円$B_1,B_2,B_3,B_4,B_5,B_6$は半径が同じrで、円$B_1$と$B_2$は接し、
図のように両方とも円$A_1$に内接し円$A_2$に外接している。円$B_3$と$B_4$は接し、図のように両方とも円$A_1$と円$A_2$に内接している。円$B_5$と$B_6$は接し、
図のように両方とも円$A_1$に外接し円$A_2$に内接している。
円$C_1$と$C_2$は半径が同じ$r'$で、それぞれ図のように正方形の2辺に内接し、円$A_1$と$A_2$に外接している。なお、円$B_1,B_2,B_5,B_6$は正方形の辺に接していない。
このとき、正方形の1辺の長さをsとすると
$\left\{\begin{array}{1}
R=\displaystyle\frac{\boxed{\ \ アイ\ \ }}{\boxed{\ \ ウエ\ \ }}r \\
s=\left(\boxed{\ \ オカ\ \ }\sqrt{R}+\boxed{\ \ キク\ \ }\sqrt{r'}\right)^{\boxed{ケコ}}\\
r'=\frac{\boxed{\ \ サシ\ \ }+\displaystyle\sqrt{10}+\boxed{\ \ スセ\ \ }\sqrt{\boxed{\ \ ソタ\ \ }+\displaystyle5\sqrt{10}}}{\boxed{\ \ チツ\ \ }}r\\
\end{array}\right.$
である。
2019慶應義塾大学環境情報学部過去問
この動画を見る
$\Large{\boxed{5}}$ 図のように(※動画参照)、1つの正方形の中に、半径の異なる3種類の円が合計10個配置されている。
円$A_1$と$A_2$は半径が同じRで、それぞれ図のように正方形の2辺に内接している。
円$B_1,B_2,B_3,B_4,B_5,B_6$は半径が同じrで、円$B_1$と$B_2$は接し、
図のように両方とも円$A_1$に内接し円$A_2$に外接している。円$B_3$と$B_4$は接し、図のように両方とも円$A_1$と円$A_2$に内接している。円$B_5$と$B_6$は接し、
図のように両方とも円$A_1$に外接し円$A_2$に内接している。
円$C_1$と$C_2$は半径が同じ$r'$で、それぞれ図のように正方形の2辺に内接し、円$A_1$と$A_2$に外接している。なお、円$B_1,B_2,B_5,B_6$は正方形の辺に接していない。
このとき、正方形の1辺の長さをsとすると
$\left\{\begin{array}{1}
R=\displaystyle\frac{\boxed{\ \ アイ\ \ }}{\boxed{\ \ ウエ\ \ }}r \\
s=\left(\boxed{\ \ オカ\ \ }\sqrt{R}+\boxed{\ \ キク\ \ }\sqrt{r'}\right)^{\boxed{ケコ}}\\
r'=\frac{\boxed{\ \ サシ\ \ }+\displaystyle\sqrt{10}+\boxed{\ \ スセ\ \ }\sqrt{\boxed{\ \ ソタ\ \ }+\displaystyle5\sqrt{10}}}{\boxed{\ \ チツ\ \ }}r\\
\end{array}\right.$
である。
2019慶應義塾大学環境情報学部過去問
福田の1.5倍速演習〜合格する重要問題057〜慶應義塾大学大学2019年度商学部第3問〜グループ分けの確率
単元:
#数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\Large{\boxed{3}}$ 男子7人、女子5人の12人の中から3人を選んで第1グループを作る。次に、残った人の中から3人を選んで第2グループを作る。
(1)第1グループの男子の数が
0人である確率は$\displaystyle\frac{\boxed{\ \ ア\ \ }}{\boxed{\ \ イウ\ \ }}$
1人である確率は$\displaystyle\frac{\boxed{\ \ エ\ \ }}{\boxed{\ \ オカ\ \ }}$
2人である確率は$\displaystyle\frac{\boxed{\ \ キク\ \ }}{\boxed{\ \ ケコ\ \ }}$
3人である確率は$\displaystyle\frac{\boxed{\ \ サ\ \ }}{\boxed{\ \ シス\ \ }}$
である。
(2)第1グループも第2グループも男子の数が1人である確率は$\frac{\boxed{\ \ セ\ \ }}{\boxed{\ \ ソタ\ \ }}$である。また、第2グループの男子の数が1人である確率は$\frac{\boxed{\ \ チ\ \ }}{\boxed{\ \ ツテ\ \ }}$である。
(3)第2グループの男子の数が1人であるとき、第1グループの男子の数も1人である確率は$\frac{\boxed{\ \ ト\ \ }}{\boxed{\ \ ナニ\ \ }}$である。
2019慶應義塾大学商学部過去問
この動画を見る
$\Large{\boxed{3}}$ 男子7人、女子5人の12人の中から3人を選んで第1グループを作る。次に、残った人の中から3人を選んで第2グループを作る。
(1)第1グループの男子の数が
0人である確率は$\displaystyle\frac{\boxed{\ \ ア\ \ }}{\boxed{\ \ イウ\ \ }}$
1人である確率は$\displaystyle\frac{\boxed{\ \ エ\ \ }}{\boxed{\ \ オカ\ \ }}$
2人である確率は$\displaystyle\frac{\boxed{\ \ キク\ \ }}{\boxed{\ \ ケコ\ \ }}$
3人である確率は$\displaystyle\frac{\boxed{\ \ サ\ \ }}{\boxed{\ \ シス\ \ }}$
である。
(2)第1グループも第2グループも男子の数が1人である確率は$\frac{\boxed{\ \ セ\ \ }}{\boxed{\ \ ソタ\ \ }}$である。また、第2グループの男子の数が1人である確率は$\frac{\boxed{\ \ チ\ \ }}{\boxed{\ \ ツテ\ \ }}$である。
(3)第2グループの男子の数が1人であるとき、第1グループの男子の数も1人である確率は$\frac{\boxed{\ \ ト\ \ }}{\boxed{\ \ ナニ\ \ }}$である。
2019慶應義塾大学商学部過去問
福田の数学〜北里大学2020年医学部第1問(1)〜虚数係数の3次方程式の解
単元:
#数Ⅱ#大学入試過去問(数学)#複素数と方程式#複素数#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#北里大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\Large{\boxed{1}}$ (1)$p,q$を実数の定数、$i$を虚数単位とする。$x$の方程式
$x^3-(p-i)x^2+(q-pi)x-2p+\displaystyle\frac{3p}{2}i=0$
が$2+i$を解にもつとする。このとき、$p=\boxed{\ \ ア\ \ }$,$q=\boxed{\ \ イ\ \ }$である。また、この方程式の$2+i$以外の解を$\alpha$,$\beta$(ただし、|$\alpha$| $\lt$ |$\beta$|)とおくと$\left(\displaystyle\frac{\beta-i}{\alpha}\right)^7=\boxed{\ \ ウ \ \ }$である。
2020北里大学医学部過去問
この動画を見る
$\Large{\boxed{1}}$ (1)$p,q$を実数の定数、$i$を虚数単位とする。$x$の方程式
$x^3-(p-i)x^2+(q-pi)x-2p+\displaystyle\frac{3p}{2}i=0$
が$2+i$を解にもつとする。このとき、$p=\boxed{\ \ ア\ \ }$,$q=\boxed{\ \ イ\ \ }$である。また、この方程式の$2+i$以外の解を$\alpha$,$\beta$(ただし、|$\alpha$| $\lt$ |$\beta$|)とおくと$\left(\displaystyle\frac{\beta-i}{\alpha}\right)^7=\boxed{\ \ ウ \ \ }$である。
2020北里大学医学部過去問
福田の1.5倍速演習〜合格する重要問題056〜神戸大学2017年度文系第1問〜3次関数の最大最小
単元:
#数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#指数関数#接線と増減表・最大値・最小値#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#神戸大学#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
$\Large{\boxed{1}}$ tを正の実数とする。$f(x)=x^3+3x^2-3(t^2-1)x+2t^3-3t^2+1$とおく。
以下の問いに答えよ。
(1)2t^3-3t^2+1 を因数分解せよ。
(2)$f(x)$が極小値0をもつことを示せ。
(3)$-1 \leqq x \leqq 2$における$f(x)$の最小値$m$と最大値$M$をtの式で表せ。
2017神戸大学文系過去問
この動画を見る
$\Large{\boxed{1}}$ tを正の実数とする。$f(x)=x^3+3x^2-3(t^2-1)x+2t^3-3t^2+1$とおく。
以下の問いに答えよ。
(1)2t^3-3t^2+1 を因数分解せよ。
(2)$f(x)$が極小値0をもつことを示せ。
(3)$-1 \leqq x \leqq 2$における$f(x)$の最小値$m$と最大値$M$をtの式で表せ。
2017神戸大学文系過去問
福田の1.5倍速演習〜合格する重要問題055〜大阪大学2017年度理系第5問〜回転体と回転体の交わりの部分の体積
単元:
#大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
$\Large{\boxed{5}}$ xy平面上で放物線y=$x^2$と直線y=2で囲まれた図形を、y軸のまわりに1回転してできる回転体をLとおく。回転体Lに含まれる点のうち、xy平面上の直線x=1からの距離が1以下のもの全体がつくる立体をMとおく。
(1)$t$を$0 \leqq t \leqq 2$を満たす実数とする。xy平面上の点(0, $t$)を通り、
y軸に直交する平面によるMの切り口の面積を$S(t)$とする。$t=(2\cos\theta)^2$ $\left(\displaystyle\frac{\pi}{4} \leqq \theta \leqq \displaystyle\frac{\pi}{2}\right)$のとき、$S(t)$を$\theta$を用いて表せ。
(2)Mの体積Vを求めよ。
2017大阪大学理系過去問
この動画を見る
$\Large{\boxed{5}}$ xy平面上で放物線y=$x^2$と直線y=2で囲まれた図形を、y軸のまわりに1回転してできる回転体をLとおく。回転体Lに含まれる点のうち、xy平面上の直線x=1からの距離が1以下のもの全体がつくる立体をMとおく。
(1)$t$を$0 \leqq t \leqq 2$を満たす実数とする。xy平面上の点(0, $t$)を通り、
y軸に直交する平面によるMの切り口の面積を$S(t)$とする。$t=(2\cos\theta)^2$ $\left(\displaystyle\frac{\pi}{4} \leqq \theta \leqq \displaystyle\frac{\pi}{2}\right)$のとき、$S(t)$を$\theta$を用いて表せ。
(2)Mの体積Vを求めよ。
2017大阪大学理系過去問
福田の数学〜北里大学2021年医学部第3問〜関数の増減とはさみうちの原理による数列の極限
単元:
#大学入試過去問(数学)#関数と極限#微分とその応用#数列の極限#微分法#学校別大学入試過去問解説(数学)#北里大学#数学(高校生)#数Ⅲ
指導講師:
福田次郎
問題文全文(内容文):
$\Large{\boxed{3}}$ 関数$f(x)=x^5-2x^3+9x$について考える。実数$t$に対して$y=f(x)$上の点($t, f(t)$)における接線と$x$軸の交点の$x$座標を$g(t)$とおく。
また、正の実数$t$に対して$h(t)=\displaystyle\frac{g(t)}{t}$とおく。次の問いに答えよ。
(1)$g(t)$を求めよ。
(2)$h'(t)=0$を満たす正の実数$t$を求めよ。
(3)実数$p$は、すべての正の実数$t$に対して|$h(t)$|$\leqq p$を満たすとする。
このような$p$の最小値を求めよ。
(4)$a$を定数とする。$a_1=a, a_{n+1}=g(a_n)$ $(n=1,2,3...)$で定められる数列
$\left\{a_n\right\}$に対して、$\displaystyle\lim_{n \to \infty}a_n=0$となることを示せ。
2021北里大学医学部過去問
この動画を見る
$\Large{\boxed{3}}$ 関数$f(x)=x^5-2x^3+9x$について考える。実数$t$に対して$y=f(x)$上の点($t, f(t)$)における接線と$x$軸の交点の$x$座標を$g(t)$とおく。
また、正の実数$t$に対して$h(t)=\displaystyle\frac{g(t)}{t}$とおく。次の問いに答えよ。
(1)$g(t)$を求めよ。
(2)$h'(t)=0$を満たす正の実数$t$を求めよ。
(3)実数$p$は、すべての正の実数$t$に対して|$h(t)$|$\leqq p$を満たすとする。
このような$p$の最小値を求めよ。
(4)$a$を定数とする。$a_1=a, a_{n+1}=g(a_n)$ $(n=1,2,3...)$で定められる数列
$\left\{a_n\right\}$に対して、$\displaystyle\lim_{n \to \infty}a_n=0$となることを示せ。
2021北里大学医学部過去問
福田の1.5倍速演習〜合格する重要問題054〜大阪大学2017年度文系第1問〜放物線とx軸で囲まれた面積
単元:
#数Ⅰ#大学入試過去問(数学)#2次関数#2次関数とグラフ#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\Large{\boxed{1}}$ $b,c$を実数、$q$を正の実数とする。放物線$P:y=-x^2+bx+c$の頂点の$y$座標が
$q$のとき、放物線$P$と$x$軸で囲まれた部分の面積$S$を$q$を用いて表せ。
2017大阪大学文系過去問
この動画を見る
$\Large{\boxed{1}}$ $b,c$を実数、$q$を正の実数とする。放物線$P:y=-x^2+bx+c$の頂点の$y$座標が
$q$のとき、放物線$P$と$x$軸で囲まれた部分の面積$S$を$q$を用いて表せ。
2017大阪大学文系過去問
福田の1.5倍速演習〜合格する重要問題053〜名古屋大学2017年度文系第3問〜不定方程式の解と条件を満たす約数の個数
単元:
#数A#大学入試過去問(数学)#整数の性質#ユークリッド互除法と不定方程式・N進法#学校別大学入試過去問解説(数学)#数学(高校生)#名古屋大学
指導講師:
福田次郎
問題文全文(内容文):
$\Large{\boxed{3}}$ 次の問に答えよ。
(1)次の条件(*)を満たす3つの自然数($a$,$b$,$c$)をすべて求めよ。
(*)$a \lt b \lt c$かつ$\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{2}$である。
(2)偶数$2n(n \geqq 1)$の3つの正の約数$p,q,r$で$p \gt q \gt r$と$p+q+r=n$を満たす組($p,q,r$)の個数を$f(n)$とする。ただし、条件を満たす組が存在しない場合は、
$f(n)=0$とする。$n$が自然数全体を動くときの$f(n)$の最大値$M$を求めよ。
また、$f(n)=M$となる自然数$n$の中で最小のものを求めよ。
2017名古屋大学文系過去問
この動画を見る
$\Large{\boxed{3}}$ 次の問に答えよ。
(1)次の条件(*)を満たす3つの自然数($a$,$b$,$c$)をすべて求めよ。
(*)$a \lt b \lt c$かつ$\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{2}$である。
(2)偶数$2n(n \geqq 1)$の3つの正の約数$p,q,r$で$p \gt q \gt r$と$p+q+r=n$を満たす組($p,q,r$)の個数を$f(n)$とする。ただし、条件を満たす組が存在しない場合は、
$f(n)=0$とする。$n$が自然数全体を動くときの$f(n)$の最大値$M$を求めよ。
また、$f(n)=M$となる自然数$n$の中で最小のものを求めよ。
2017名古屋大学文系過去問
福田の1.5倍速演習〜合格する重要問題052〜東京慈恵会医科大学2019年度医学部第2問〜2曲線の相接と囲まれた部分の面積とその極限
単元:
#大学入試過去問(数学)#微分とその応用#微分法#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#東京慈恵会医科大学#東京慈恵会医科大学
指導講師:
福田次郎
問題文全文(内容文):
$\Large{\boxed{2}}$ $a,b$は定数で$a \gt 1$とする。2つの曲線$C_1:y=\displaystyle\frac{3e^x-1}{e^x+1}$,$C_2:y=\displaystyle\frac{e^x}{a^2}+b$が共有点Pをもち、点Pにおいて共通の接線をもつとする。このとき、次の問いに答えよ。
(1)$C_1$の凹凸および変曲点を調べ、$C_1$の概形を描け。
(2)点Pの座標と$b$を$a$で表せ。
(3)$C_1$,$C_2$と$y$軸で囲まれた部分の面積$S(a)$を$a$で表せ。また、極限値$\displaystyle\lim_{a \to \infty}S(a)$を求めよ。
ただし、必要ならば$\displaystyle\lim_{x \to \infty}\frac{\log x}{x}= 0$であることを用いてよい。
2019東京慈恵会医科大学医学部過去問
この動画を見る
$\Large{\boxed{2}}$ $a,b$は定数で$a \gt 1$とする。2つの曲線$C_1:y=\displaystyle\frac{3e^x-1}{e^x+1}$,$C_2:y=\displaystyle\frac{e^x}{a^2}+b$が共有点Pをもち、点Pにおいて共通の接線をもつとする。このとき、次の問いに答えよ。
(1)$C_1$の凹凸および変曲点を調べ、$C_1$の概形を描け。
(2)点Pの座標と$b$を$a$で表せ。
(3)$C_1$,$C_2$と$y$軸で囲まれた部分の面積$S(a)$を$a$で表せ。また、極限値$\displaystyle\lim_{a \to \infty}S(a)$を求めよ。
ただし、必要ならば$\displaystyle\lim_{x \to \infty}\frac{\log x}{x}= 0$であることを用いてよい。
2019東京慈恵会医科大学医学部過去問
福田の1.5倍速演習〜合格する重要問題051〜東京理科大学2019年度理工学部第1問(2)〜桁数と最高位の数
単元:
#数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#学校別大学入試過去問解説(数学)#東京理科大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\Large{\boxed{1}}$ (2)$\log_{10}2=0.3010$, $\log_{10}3=0.4771$とする。$2^{36}$は$\boxed{\ \ テト \ \ }$桁の整数である。
$3^n$が$\boxed{\ \ テト \ \ }$桁の整数となる最小の自然数$n$は$\boxed{\ \ ナニ \ \ }$であり、$2^{36}+6×3^{\boxed{\ \ ナニ \ \ }}$
は$\boxed{\ \ ヌネ \ \ }$桁の整数である。
2019東京理科大学理工学部過去問
この動画を見る
$\Large{\boxed{1}}$ (2)$\log_{10}2=0.3010$, $\log_{10}3=0.4771$とする。$2^{36}$は$\boxed{\ \ テト \ \ }$桁の整数である。
$3^n$が$\boxed{\ \ テト \ \ }$桁の整数となる最小の自然数$n$は$\boxed{\ \ ナニ \ \ }$であり、$2^{36}+6×3^{\boxed{\ \ ナニ \ \ }}$
は$\boxed{\ \ ヌネ \ \ }$桁の整数である。
2019東京理科大学理工学部過去問
福田の数学〜北里大学2021年医学部第2問〜条件が複雑な重複順列
単元:
#大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#北里大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\Large{\boxed{2}}$ $n$ を正の整数とし、1,2,3,4,5,6の6個の数字から同じ数字を繰り返し用いることを許して$n$桁の整数をつくる。このような整数のうち、1が奇数個用いられるものの総数を$A_n$、それ以外のものの総数を$B_n$とする。
また、1か6がいずれも奇数個用いられるものの総数を$C_n$とする。次の問いに答えよ。
(1)$A_4$を求めよ。
(2)正の整数$n$に対して、$A_{n+1}$を$A_n$と$B_n$を用いて表せ。
(3)正の整数$n$に対して、$A_n$と$B_n$を求めよ。
(4)$p$を定数とする。$X_1=p$,$X_{n+1}=2X_n+6^n$($n$=1,2,3,...)で定められる
数列を$\left\{X_n\right\}$とする。正の整数$n$に対して、$X_n$を$n$と$p$を用いて表せ。
(5)正の整数$n$に対して、$C_n$を求めよ。
2021北里大学医学部過去問
この動画を見る
$\Large{\boxed{2}}$ $n$ を正の整数とし、1,2,3,4,5,6の6個の数字から同じ数字を繰り返し用いることを許して$n$桁の整数をつくる。このような整数のうち、1が奇数個用いられるものの総数を$A_n$、それ以外のものの総数を$B_n$とする。
また、1か6がいずれも奇数個用いられるものの総数を$C_n$とする。次の問いに答えよ。
(1)$A_4$を求めよ。
(2)正の整数$n$に対して、$A_{n+1}$を$A_n$と$B_n$を用いて表せ。
(3)正の整数$n$に対して、$A_n$と$B_n$を求めよ。
(4)$p$を定数とする。$X_1=p$,$X_{n+1}=2X_n+6^n$($n$=1,2,3,...)で定められる
数列を$\left\{X_n\right\}$とする。正の整数$n$に対して、$X_n$を$n$と$p$を用いて表せ。
(5)正の整数$n$に対して、$C_n$を求めよ。
2021北里大学医学部過去問
福田の1.5倍速演習〜合格する重要問題050〜一橋大学2017年度文系第2問〜連立方程式の整数解
単元:
#連立方程式#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\Large{\boxed{2}}$ 連立方程式$\\$
$\left\{\begin{array}{1}
x^2=yz+7\\
y^2=zx+7\\
z^2=xy+7\\
\end{array}\right.\\$
を満たす整数の組(x,y,z)でx $\leqq$ y $\leqq$ zとなるものを求めよ。
2017一橋大学文系過去問
この動画を見る
$\Large{\boxed{2}}$ 連立方程式$\\$
$\left\{\begin{array}{1}
x^2=yz+7\\
y^2=zx+7\\
z^2=xy+7\\
\end{array}\right.\\$
を満たす整数の組(x,y,z)でx $\leqq$ y $\leqq$ zとなるものを求めよ。
2017一橋大学文系過去問