福田の数学〜慶應義塾大学2023年医学部第2問〜反復試行の確率 - 質問解決D.B.(データベース)

福田の数学〜慶應義塾大学2023年医学部第2問〜反復試行の確率

問題文全文(内容文):
$\Large\boxed{2}$ nを自然数とする。A君とB君の2人が以下の試合Tをnセット行い、それぞれが得点をためていくとする。
試合T:2人で腕ずもうを繰り返し行う。毎回、A君, B君のどちらも勝つ確率は$\frac{1}{2}$ずつである。どちらかが先に2勝したら、腕ずもうを行うのをやめる。2勝0敗の者は2点を、2勝1敗の者は1点を得る。2勝しなかった者の得点は0点である。
A君が1セット目からnセットまでに得た点の合計を$a_n$とし、B君が1セット目からnセットまでに得た点の合計を$b_n$とする。
(1)n=1とする。$a_1$=2である確率は$\boxed{\ \ あ\ \ }$であり、$a_1$=1である確率は$\boxed{\ \ い\ \ }$である。
(2)n≧4とする。試合Tをnセット行ううち、A君が2点を得るのがちょうど2セット、かつ1点を得るのがちょうど2セットである確率は$\frac{\boxed{\ \ う\ \ }}{\boxed{\ \ え\ \ }}$である。
(3)n≧2とする。$a_n$=$n$+2かつ$b_n$=0である確率は$\frac{\boxed{\ \ お\ \ }}{\boxed{\ \ か\ \ }}$である。
(4)$a_n$=2である確率は$\frac{\boxed{\ \ き\ \ }}{\boxed{\ \ く\ \ }}$である。
(5)n=4とする。$a_4$>$b_4$である確率は$\frac{\boxed{\ \ け\ \ }}{\boxed{\ \ こ\ \ }}$である。

2023慶應義塾大学医学部過去問
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ nを自然数とする。A君とB君の2人が以下の試合Tをnセット行い、それぞれが得点をためていくとする。
試合T:2人で腕ずもうを繰り返し行う。毎回、A君, B君のどちらも勝つ確率は$\frac{1}{2}$ずつである。どちらかが先に2勝したら、腕ずもうを行うのをやめる。2勝0敗の者は2点を、2勝1敗の者は1点を得る。2勝しなかった者の得点は0点である。
A君が1セット目からnセットまでに得た点の合計を$a_n$とし、B君が1セット目からnセットまでに得た点の合計を$b_n$とする。
(1)n=1とする。$a_1$=2である確率は$\boxed{\ \ あ\ \ }$であり、$a_1$=1である確率は$\boxed{\ \ い\ \ }$である。
(2)n≧4とする。試合Tをnセット行ううち、A君が2点を得るのがちょうど2セット、かつ1点を得るのがちょうど2セットである確率は$\frac{\boxed{\ \ う\ \ }}{\boxed{\ \ え\ \ }}$である。
(3)n≧2とする。$a_n$=$n$+2かつ$b_n$=0である確率は$\frac{\boxed{\ \ お\ \ }}{\boxed{\ \ か\ \ }}$である。
(4)$a_n$=2である確率は$\frac{\boxed{\ \ き\ \ }}{\boxed{\ \ く\ \ }}$である。
(5)n=4とする。$a_4$>$b_4$である確率は$\frac{\boxed{\ \ け\ \ }}{\boxed{\ \ こ\ \ }}$である。

2023慶應義塾大学医学部過去問
投稿日:2023.05.02

<関連動画>

【高校数学】順列~理解すれば怖くない~ 1-6【数学A】

アイキャッチ画像
単元: #数A#場合の数と確率#場合の数#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
順列についての説明動画です
この動画を見る 

【数A】中高一貫校問題集3(論理・確率編)86:場合の数と確率:重複順列:9人を2つのグループに分ける。考え方は格付けチェック!?

単元: #数A#場合の数と確率#場合の数#数学(高校生)
教材: #TK数学#TK数学問題集3(論理・確率編)#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
9人を次のように分ける方法は通りあるか。
(1)2つのグループA、Bに分ける。ただし、各グループには少なくとも1人は入るものとする。
(2)2つのグループに分ける。
この動画を見る 

福田のおもしろ数学172〜1000枚の1円玉を10個の袋に入れて1000円までのすべての金額が払えるようにする方法

アイキャッチ画像
単元: #数A#場合の数と確率#場合の数#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
1000枚の1円玉を10個の袋に分けます。適当な袋を組み合わせて1円から1000円まですべてを表せるようにするにはどう分ければいい?
この動画を見る 

場合の数 組み合わせ考え方の基本1 【セトリの算数がていねいに解説】

アイキャッチ画像
単元: #数A#場合の数と確率#場合の数#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
・5人乗りの車に5人が乗車してドライブをするとき、乗り方は何通りあるか。次の各場合について求めよ。
(1)5人全員が運転免許を持っている場合
(2)5人のうち3人だけが運転免許を持っている場合

・6個の数字0,1,2,3,4,5を使ってできる、次のような整数は何個あるか。ただし、同じ数字は2度以上使わないこととする。
(1)6桁の整数
(2)6桁の整数で5の倍数

・5個の数字0,1,2,3,4を使ってできる3桁の整数のうち、次のような整数は何個あるか。ただし、同じ数字は2度以上使わないものとする。
(1)偶数
(2)3の倍数
この動画を見る 

大阪市立大 確率

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$A,B$が連続対戦(引分無し)
$A$が勝つ確率は毎回$P$
$A$が$B$より先に2連勝する確率を求めよ

大阪市立大過去問
この動画を見る 
PAGE TOP