福田の数学〜慶應義塾大学2023年看護医療学部第1問(3)〜解と係数の関係 - 質問解決D.B.(データベース)

福田の数学〜慶應義塾大学2023年看護医療学部第1問(3)〜解と係数の関係

問題文全文(内容文):
$\Large\boxed{1}$ (3)2次方程式$x^2$+$x$+3=0 の2つの解を$\alpha$、$\beta$とするとき、
$\frac{\beta}{\alpha}$+$\frac{\alpha}{\beta}$=$\boxed{\ \ オ\ \ }$であり、$\frac{\beta^2}{\alpha}$+$\frac{\alpha^2}{\beta}$=$\boxed{\ \ カ\ \ }$である。

2023慶應義塾大学看護医療学部過去問
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#解と判別式・解と係数の関係#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ (3)2次方程式$x^2$+$x$+3=0 の2つの解を$\alpha$、$\beta$とするとき、
$\frac{\beta}{\alpha}$+$\frac{\alpha}{\beta}$=$\boxed{\ \ オ\ \ }$であり、$\frac{\beta^2}{\alpha}$+$\frac{\alpha^2}{\beta}$=$\boxed{\ \ カ\ \ }$である。

2023慶應義塾大学看護医療学部過去問
投稿日:2023.05.08

<関連動画>

20年5月数学検定準1級1次試験(複素数)

アイキャッチ画像
単元: #数Ⅱ#数学検定・数学甲子園・数学オリンピック等#複素数と方程式#複素数#数学検定#数学検定準1級#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$\boxed{4}$
$\alpha=(-1+i)(1-\sqrt3 i)$

(1)$\vert \alpha \vert $を求めよ.
(2)$arg \alpha$を求めよ.
$0\leqq arg \alpha \lt 2\pi$

20年5月数学検定準1級1次試験(複素数)過去問
この動画を見る 

方程式を解く。

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$(123.4-12.34) \div x =1.234$
この動画を見る 

高次方程式の有理数解

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
何進法でるか求めよ.
$x^3-21x^2+52x-32=0$が3つの整数解をもつ.
有理数解は$\dfrac{a_0の約数}{a_nの約数}$,$a_n=1$なら有理数解は$a_0$の約数の整数のみ
$a_n x^n+a_{n-1}x^{x-1}+・・・・・・+a_1 x+a_0=0$
この動画を見る 

東京医科大(類題)4次方程式の解の4乗の和

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x^4-2x^3+3x^2-4x+1=0$の4つの解を$\alpha,\beta,\zeta \delta$とする.
$\alpha^4+\beta^4+\zeta^4+\delta^4$の値を求めよ.

東京医科大(類題)過去問
この動画を見る 

指数方程式 (数II)

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$\frac{8^x+27^x}{12^x+18^x} = \frac{7}{6}$
この動画を見る 
PAGE TOP