解と判別式・解と係数の関係
複素数と方程式 数Ⅱ 2次方程式の解と判別式6【ホーン・フィールドがていねいに解説】
単元:
#数Ⅱ#複素数と方程式#解と判別式・解と係数の関係#数学(高校生)
教材:
#4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#複素数と方程式#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
2次方程式$x^2+ax+b=0$の2つの解に、それぞれ1を加えた数を解に持つ2次方程式が$x^2+bx+aー6=0$であるという。定数a、bを求めよ。
2次方程式$x^2-px+2=0$の2つの解の和と積を2つの解に持つ2次方程式が$x^2-5x+q=0$であるという。定数a、bの値を求めよ。
Aさんは2次方程式の定数項を違えたために$x=-3±\sqrt{14}$ という解を導き、Bさんは同じ2次方程式の1次の項の係数を読み違えたために、x=1、5という解を導いた。もとの正しい2次方程式の解を求めよ。
この動画を見る
2次方程式$x^2+ax+b=0$の2つの解に、それぞれ1を加えた数を解に持つ2次方程式が$x^2+bx+aー6=0$であるという。定数a、bを求めよ。
2次方程式$x^2-px+2=0$の2つの解の和と積を2つの解に持つ2次方程式が$x^2-5x+q=0$であるという。定数a、bの値を求めよ。
Aさんは2次方程式の定数項を違えたために$x=-3±\sqrt{14}$ という解を導き、Bさんは同じ2次方程式の1次の項の係数を読み違えたために、x=1、5という解を導いた。もとの正しい2次方程式の解を求めよ。
複素数と方程式 数Ⅱ 2次方程式の解と判別式5【ホーン・フィールドがていねいに解説】
単元:
#数Ⅱ#複素数と方程式#解と判別式・解と係数の関係#数学(高校生)
教材:
#4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#複素数と方程式#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
pを実数とする。次の2次方程式の解の1つが[ ]内の数であるとき、他の解を求めよ。また、定数pの値を求めよ。
(1) $2x^2+10x+p=0$ $[\displaystyle \frac{1}{2}
] $
(2)$x^2+px+4=0$ $[1+\sqrt{3}i]$
2次方程式$x^2-2x+7=0$の2つの解をα,βとするとき、次の2数を解とする2次方程式を作れ。
(1) α+2,β+2
(2) -2α, -2β
(3) α², β²
2次方程式$x^2-5x+5=0$は異なる2つの実数解をもつ。2つの実数解の小数部分を解とする2次方程式を作れ。
この動画を見る
pを実数とする。次の2次方程式の解の1つが[ ]内の数であるとき、他の解を求めよ。また、定数pの値を求めよ。
(1) $2x^2+10x+p=0$ $[\displaystyle \frac{1}{2}
] $
(2)$x^2+px+4=0$ $[1+\sqrt{3}i]$
2次方程式$x^2-2x+7=0$の2つの解をα,βとするとき、次の2数を解とする2次方程式を作れ。
(1) α+2,β+2
(2) -2α, -2β
(3) α², β²
2次方程式$x^2-5x+5=0$は異なる2つの実数解をもつ。2つの実数解の小数部分を解とする2次方程式を作れ。
二次方程式の応用
単元:
#数Ⅱ#複素数と方程式#解と判別式・解と係数の関係#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
$x^2-2x-5=0$の解をp,q (p<q)
$x^2-2x-7=0$の解をr,s (r<s)
(p-r)(p-s)(r-p)(r-q)=?
この動画を見る
$x^2-2x-5=0$の解をp,q (p<q)
$x^2-2x-7=0$の解をr,s (r<s)
(p-r)(p-s)(r-p)(r-q)=?
答えの数値で安心する問題 聖マリアンナ医科大
単元:
#数Ⅱ#大学入試過去問(数学)#複素数と方程式#解と判別式・解と係数の関係#学校別大学入試過去問解説(数学)#聖マリアンナ医科大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$x^3+\sqrt[3]{4}X+4=0$
の3つの解をα,β,γとする
$(10\sqrt[3]{2}-α)(10\sqrt[3]{2}-β)(10\sqrt[3]{2}-γ)$
の値を求めよ。
聖マリアンナ医科大過去問
この動画を見る
$x^3+\sqrt[3]{4}X+4=0$
の3つの解をα,β,γとする
$(10\sqrt[3]{2}-α)(10\sqrt[3]{2}-β)(10\sqrt[3]{2}-γ)$
の値を求めよ。
聖マリアンナ医科大過去問
高校数学:数学検定準1級2次:問題6 3次方程式の解と係数の関係
単元:
#数Ⅱ#数学検定・数学甲子園・数学オリンピック等#複素数と方程式#解と判別式・解と係数の関係#剰余の定理・因数定理・組み立て除法と高次方程式#数学検定#数学検定準1級#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
次の2つの3次方程式
$x^3+10x^2+ax+14=0$
$x^3+2x^2+bx-2=0$
はそれぞれ異なる3個の解をもちますが、そのうちの2個は共通な解です。このと き、定数$a,b$の値および共通な2個の解を求めなさい。
この動画を見る
次の2つの3次方程式
$x^3+10x^2+ax+14=0$
$x^3+2x^2+bx-2=0$
はそれぞれ異なる3個の解をもちますが、そのうちの2個は共通な解です。このと き、定数$a,b$の値および共通な2個の解を求めなさい。
【数学】中高一貫校問題集 数学3 数式・関数編 111 実数解が存在することの証明
単元:
#数Ⅱ#複素数と方程式#解と判別式・解と係数の関係#数学(高校生)
教材:
#TK数学#TK数学問題集3(数式・関数編)#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
a,b,cは実数の定数で、a≠0とする。2次方程式ax²+bx+c=0が、次の各場合に必ず実数解をもつことを証明せよ。
(1)$b=\frac{a}{2}+2c$
(2)$a+c=0$
(3)aとcが異符号
この動画を見る
a,b,cは実数の定数で、a≠0とする。2次方程式ax²+bx+c=0が、次の各場合に必ず実数解をもつことを証明せよ。
(1)$b=\frac{a}{2}+2c$
(2)$a+c=0$
(3)aとcが異符号
【数学】中高一貫校問題集 数学3 数式・関数編 109 虚数を含む2次方程式の解法
単元:
#数Ⅱ#複素数と方程式#解と判別式・解と係数の関係#数学(高校生)
教材:
#TK数学#TK数学問題集3(数式・関数編)#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
次の等式を満たす実数xの値を求めよ。
(1)(2+i)x²-(1+6i)x-2(3-4i)=0
(2)(3+2i)x²+(8+5i)x-3(1+i)=0
この動画を見る
次の等式を満たす実数xの値を求めよ。
(1)(2+i)x²-(1+6i)x-2(3-4i)=0
(2)(3+2i)x²+(8+5i)x-3(1+i)=0
福田のおもしろ数学036〜君は対称式を理解しているか?〜対称式の値を求める
単元:
#数Ⅱ#複素数と方程式#解と判別式・解と係数の関係#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
{$x+y+z=0$
{$x^3+y^3+z^3=3$
{$x^5+y^5+z^5=15$
のとき、$x^2+y^2+z^2$の値は??
この動画を見る
{$x+y+z=0$
{$x^3+y^3+z^3=3$
{$x^5+y^5+z^5=15$
のとき、$x^2+y^2+z^2$の値は??
複素数と方程式 数Ⅱ 2次方程式の解と判別式4【ホーン・フィールドがていねいに解説】
単元:
#数Ⅱ#複素数と方程式#解と判別式・解と係数の関係#数学(高校生)
教材:
#4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#複素数と方程式#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
2つの2次方程式x²+mx+m=0, x²+mx+1=0がともに虚数解をもつとき、定数mの値の範囲を定めよ。
2つの2次方程式x²+2mx-2m=0, x²+(m-1)x+m²=0が次の条件を満たすとき、定数mの値の範囲を定めよ。
(1)少なくとも一方が実数解をもつ
(2)一方だけが実数解をもつ
この動画を見る
2つの2次方程式x²+mx+m=0, x²+mx+1=0がともに虚数解をもつとき、定数mの値の範囲を定めよ。
2つの2次方程式x²+2mx-2m=0, x²+(m-1)x+m²=0が次の条件を満たすとき、定数mの値の範囲を定めよ。
(1)少なくとも一方が実数解をもつ
(2)一方だけが実数解をもつ
複素数と方程式 数Ⅱ 2次方程式の解と判別式3【ホーン・フィールドがていねいに解説】
単元:
#数Ⅱ#複素数と方程式#解と判別式・解と係数の関係#数学(高校生)
教材:
#4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#複素数と方程式#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
2つの2次方程式x²+mx+m=0, x²+mx+1=0がともに虚数解をもつとき、定数mの値の範囲を定めよ。
2つの2次方程式x²+2mx-2m=0, x²+(m-1)x+m²=0が次の条件を満たすとき、定数mの値の範囲を定めよ。
(1)少なくとも一方が実数解をもつ
(2)一方だけが実数解をもつ
この動画を見る
2つの2次方程式x²+mx+m=0, x²+mx+1=0がともに虚数解をもつとき、定数mの値の範囲を定めよ。
2つの2次方程式x²+2mx-2m=0, x²+(m-1)x+m²=0が次の条件を満たすとき、定数mの値の範囲を定めよ。
(1)少なくとも一方が実数解をもつ
(2)一方だけが実数解をもつ
共テ数学90%取る勉強法
単元:
#数Ⅰ#数A#数Ⅱ#数と式#2次関数#場合の数と確率#式と証明#複素数と方程式#式の計算(整式・展開・因数分解)#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#2次関数とグラフ#整数の性質#場合の数#約数・倍数・整数の割り算と余り・合同式#三角関数#指数関数と対数関数#微分法と積分法#整式の除法・分数式・二項定理#複素数#解と判別式・解と係数の関係#剰余の定理・因数定理・組み立て除法と高次方程式#三角関数とグラフ#指数関数#対数関数#平均変化率・極限・導関数#数列#数列とその和(等差・等比・階差・Σ)#数学的帰納法#数学(高校生)#数B
指導講師:
カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
共通テスト数学90%取る勉強法説明動画です
この動画を見る
共通テスト数学90%取る勉強法説明動画です
数学どうにかしたい人へ
単元:
#数Ⅰ#数A#数Ⅱ#数と式#2次関数#場合の数と確率#図形の性質#式と証明#複素数と方程式#平面上のベクトル#空間ベクトル#平面上の曲線#複素数平面#図形と計量#データの分析#式の計算(整式・展開・因数分解)#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#一次不等式(不等式・絶対値のある方程式・不等式)#集合と命題(集合・命題と条件・背理法)#2次方程式と2次不等式#2次関数とグラフ#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)#データの分析#整数の性質#場合の数#確率#三角形の辺の比(内分・外分・二等分線)#内心・外心・重心とチェバ・メネラウス#周角と円に内接する四角形・円と接線・接弦定理#方べきの定理と2つの円の関係#約数・倍数・整数の割り算と余り・合同式#ユークリッド互除法と不定方程式・N進法#図形と方程式#三角関数#指数関数と対数関数#微分法と積分法#整式の除法・分数式・二項定理#恒等式・等式・不等式の証明#複素数#解と判別式・解と係数の関係#剰余の定理・因数定理・組み立て除法と高次方程式#円と方程式#軌跡と領域#三角関数とグラフ#加法定理とその応用#指数関数#対数関数#平均変化率・極限・導関数#接線と増減表・最大値・最小値#数列#確率分布と統計的な推測#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#空間ベクトル#数列とその和(等差・等比・階差・Σ)#漸化式#数学的帰納法#確率分布#統計的な推測#関数と極限#微分とその応用#積分とその応用#2次曲線#複素数平面#図形への応用#関数(分数関数・無理関数・逆関数と合成関数)#数列の極限#関数の極限#微分法#色々な関数の導関数#接線と法線・平均値の定理#関数の変化(グラフ・最大最小・方程式・不等式)#不定積分#定積分#面積・体積・長さ・速度#空間における垂直と平行と多面体(オイラーの法則)#不定積分・定積分#面積、体積#媒介変数表示と極座標#速度と近似式#数学(高校生)#数B#数C#数Ⅲ
指導講師:
カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
数学が共通テストのみの人の勉強法紹介動画です
この動画を見る
数学が共通テストのみの人の勉強法紹介動画です
4次方程式の解と係数の関係 答えがあっていればなんでもいいか!山口大
単元:
#数Ⅱ#大学入試過去問(数学)#複素数と方程式#解と判別式・解と係数の関係#学校別大学入試過去問解説(数学)#数学(高校生)#山口大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
$
\begin{eqnarray}
&&2023山口大\\
&&x^4-6x^2+25=0の4つの解をp,q,r,s\\
&&①p^3+q^3+r^3+s^3\\
&&②p^3q^3+p^3r^3+p^3s^3+q^3r^3+q^3s^3+r^3s^3
\end{eqnarray}
$
この動画を見る
$
\begin{eqnarray}
&&2023山口大\\
&&x^4-6x^2+25=0の4つの解をp,q,r,s\\
&&①p^3+q^3+r^3+s^3\\
&&②p^3q^3+p^3r^3+p^3s^3+q^3r^3+q^3s^3+r^3s^3
\end{eqnarray}
$
東京医科大 4次方程式
単元:
#解と判別式・解と係数の関係
指導講師:
鈴木貫太郎
問題文全文(内容文):
2021東京医科大学過去問題
$x^4+11x^3+31x^2+11x+1=0$の4つの解を,$\alpha,\beta,\gamma,\delta$とする.
下の値を求めよ.
①$\dfrac{1}{\alpha}+\dfrac{1}{\beta}+\dfrac{1}{\gamma}+\dfrac{1}{\delta}$
②$\alpha^2+\beta^2+\gamma^2+\delta^2$
③$\alpha^3+\beta^3+\gamma^3+\delta^3$
この動画を見る
2021東京医科大学過去問題
$x^4+11x^3+31x^2+11x+1=0$の4つの解を,$\alpha,\beta,\gamma,\delta$とする.
下の値を求めよ.
①$\dfrac{1}{\alpha}+\dfrac{1}{\beta}+\dfrac{1}{\gamma}+\dfrac{1}{\delta}$
②$\alpha^2+\beta^2+\gamma^2+\delta^2$
③$\alpha^3+\beta^3+\gamma^3+\delta^3$
千葉大 複素数の方程式
単元:
#数Ⅱ#複素数と方程式#複素数#解と判別式・解と係数の関係#千葉大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
2023千葉大学過去問題
①$z^3=i$を解け
②$z^{100}=i$の解で 実部$\leqq \frac{1}{2}$
かつ虚部$\geqq 0$は何個あるか?
この動画を見る
2023千葉大学過去問題
①$z^3=i$を解け
②$z^{100}=i$の解で 実部$\leqq \frac{1}{2}$
かつ虚部$\geqq 0$は何個あるか?
複素数のいい問題 山形大
単元:
#数Ⅱ#複素数と方程式#複素数#解と判別式・解と係数の関係#数学(高校生)#山形大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
山形大学過去問題
複素数平面上の相異なる3点A(α),B(β),C(γ)において
$α^2+β^2+γ^2=αβ+βγ+αγ$が成り立つなら△ABCは正三角形であることを示せ
この動画を見る
山形大学過去問題
複素数平面上の相異なる3点A(α),B(β),C(γ)において
$α^2+β^2+γ^2=αβ+βγ+αγ$が成り立つなら△ABCは正三角形であることを示せ
福田の数学〜神戸大学2023年文系第1問〜2次方程式の解の存在範囲
単元:
#数Ⅰ#大学入試過去問(数学)#2次関数#2次方程式と2次不等式#解と判別式・解と係数の関係#学校別大学入試過去問解説(数学)#神戸大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ $a$, $b$を実数とする。整式$f(x)$を$f(x)$=$x^2$+$ax$+$b$で定める。以下の問いに答えよ。
(1)2次方程式$f(x)$=0 が異なる2つの正の解をもつための$a$と$b$が満たすべき必要十分条件を求めよ。
(2)2次方程式$f(x)$=0 が異なる2つの実数解をもち、それらが共に-1より大きく、0より小さくなるような点(a, b)の存在する範囲を$ab$平面上に図示せよ。
(3)2次方程式$f(x)$=0 の2つの解の実部が共に-1より大きく、0より小さくなるような点(a, b)の存在する範囲を$ab$平面上に図示せよ。ただし、2次方程式の重解は2つと数える。
2023神戸大学文系過去問
この動画を見る
$\Large\boxed{1}$ $a$, $b$を実数とする。整式$f(x)$を$f(x)$=$x^2$+$ax$+$b$で定める。以下の問いに答えよ。
(1)2次方程式$f(x)$=0 が異なる2つの正の解をもつための$a$と$b$が満たすべき必要十分条件を求めよ。
(2)2次方程式$f(x)$=0 が異なる2つの実数解をもち、それらが共に-1より大きく、0より小さくなるような点(a, b)の存在する範囲を$ab$平面上に図示せよ。
(3)2次方程式$f(x)$=0 の2つの解の実部が共に-1より大きく、0より小さくなるような点(a, b)の存在する範囲を$ab$平面上に図示せよ。ただし、2次方程式の重解は2つと数える。
2023神戸大学文系過去問
福田の数学〜神戸大学2023年理系第2問〜2次方程式の解の存在範囲
単元:
#数Ⅰ#数Ⅱ#大学入試過去問(数学)#2次関数#複素数と方程式#2次方程式と2次不等式#解と判別式・解と係数の関係#学校別大学入試過去問解説(数学)#神戸大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ a,bを実数とする。整式$f(x)$=$x^2$+$ax$+$b$ で定める。以下の問いに答えよ。ただし、2次方程式の重解は2つと数える。
(1)2次方程式$f(x)$=0が異なる2つの正の解をもつためのaとbが満たすべき必要十分条件を求めよ。
(2)2次方程式$f(x)$=0の2つの解の実部が共に0より小さくなるような点(a, b)の存在する範囲をab平面上に図示せよ。
(3)2次方程式$f(x)$=0の2つの解の実部が共に-1より大きく、0より小さくなるような点(a, b)の存在する範囲をab平面上に図示せよ。
2023神戸大学理系過去問
この動画を見る
$\Large\boxed{2}$ a,bを実数とする。整式$f(x)$=$x^2$+$ax$+$b$ で定める。以下の問いに答えよ。ただし、2次方程式の重解は2つと数える。
(1)2次方程式$f(x)$=0が異なる2つの正の解をもつためのaとbが満たすべき必要十分条件を求めよ。
(2)2次方程式$f(x)$=0の2つの解の実部が共に0より小さくなるような点(a, b)の存在する範囲をab平面上に図示せよ。
(3)2次方程式$f(x)$=0の2つの解の実部が共に-1より大きく、0より小さくなるような点(a, b)の存在する範囲をab平面上に図示せよ。
2023神戸大学理系過去問
フツーにやっても出るけどね三次方程式解と係数の関係
単元:
#数Ⅱ#複素数と方程式#解と判別式・解と係数の関係#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$x^3+2x^2+3x+4=0の3つの解を\alpha,\beta,\deltaとしたとき、
次の3つを解にもつ3次方程式を作れ.
(1)\dfrac{1}{\alpha},\dfrac{1}{\beta},\dfrac{1}{\delta}
(2)\dfrac{1}{\alpha^2},\dfrac{1}{\beta^2},\dfrac{1}{\delta^2}$
この動画を見る
$x^3+2x^2+3x+4=0の3つの解を\alpha,\beta,\deltaとしたとき、
次の3つを解にもつ3次方程式を作れ.
(1)\dfrac{1}{\alpha},\dfrac{1}{\beta},\dfrac{1}{\delta}
(2)\dfrac{1}{\alpha^2},\dfrac{1}{\beta^2},\dfrac{1}{\delta^2}$
4次方程式の解と係数の関係?
単元:
#数Ⅱ#複素数と方程式#解と判別式・解と係数の関係#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$(x+1)(x+2)(x+3)(x+4)=4$の4つの解を$\alpha,\beta,\delta,\zeta$とするとき,
$\alpha^3+\beta^3+\delta^3+\zeta^3$の値を求めよ.
この動画を見る
$(x+1)(x+2)(x+3)(x+4)=4$の4つの解を$\alpha,\beta,\delta,\zeta$とするとき,
$\alpha^3+\beta^3+\delta^3+\zeta^3$の値を求めよ.
福田の数学〜慶應義塾大学2023年看護医療学部第1問(3)〜解と係数の関係
単元:
#数Ⅱ#大学入試過去問(数学)#複素数と方程式#解と判別式・解と係数の関係#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ (3)2次方程式$x^2$+$x$+3=0 の2つの解を$\alpha$、$\beta$とするとき、
$\frac{\beta}{\alpha}$+$\frac{\alpha}{\beta}$=$\boxed{\ \ オ\ \ }$であり、$\frac{\beta^2}{\alpha}$+$\frac{\alpha^2}{\beta}$=$\boxed{\ \ カ\ \ }$である。
2023慶應義塾大学看護医療学部過去問
この動画を見る
$\Large\boxed{1}$ (3)2次方程式$x^2$+$x$+3=0 の2つの解を$\alpha$、$\beta$とするとき、
$\frac{\beta}{\alpha}$+$\frac{\alpha}{\beta}$=$\boxed{\ \ オ\ \ }$であり、$\frac{\beta^2}{\alpha}$+$\frac{\alpha^2}{\beta}$=$\boxed{\ \ カ\ \ }$である。
2023慶應義塾大学看護医療学部過去問
意外と差がつく?しっかりと取りたい問題です【大阪大学】【数学 入試問題】
単元:
#数Ⅱ#大学入試過去問(数学)#複素数と方程式#三角関数#解と判別式・解と係数の関係#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)
指導講師:
数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
a,bを実数とする。θについての方程式$\cos 2θ=a\ sin θ+b$が実数解をもつような点(a,b)の存在範囲を座標平面上に図示せよ。
この動画を見る
a,bを実数とする。θについての方程式$\cos 2θ=a\ sin θ+b$が実数解をもつような点(a,b)の存在範囲を座標平面上に図示せよ。
ざ・解と係数の関係
単元:
#数Ⅱ#複素数と方程式#解と判別式・解と係数の関係#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$x^3+2x^2-2x-1=0の3つの解を\alpha,\beta,\deltaとする.
\dfrac{1}{(\delta-3)(\beta-3)},\dfrac{1}{(\delta-3)(\delta-3)},\dfrac{1}{(\delta-3)(\alpha-3)}を解にもつ3次方程式を求めよ.$
この動画を見る
$x^3+2x^2-2x-1=0の3つの解を\alpha,\beta,\deltaとする.
\dfrac{1}{(\delta-3)(\beta-3)},\dfrac{1}{(\delta-3)(\delta-3)},\dfrac{1}{(\delta-3)(\alpha-3)}を解にもつ3次方程式を求めよ.$
福田の数学〜東京大学2023年文系数学第1問〜解と係数の関係と最小値
単元:
#数Ⅱ#大学入試過去問(数学)#複素数と方程式#微分法と積分法#解と判別式・解と係数の関係#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ kを正の実数とし、2次方程式$x^2+x-k$=0 の2つの実数解をα,βとする。
kがk>2の範囲を動くとき、
$\displaystyle\frac{\alpha^3}{1-\beta}$+$\displaystyle\frac{\beta^3}{1-\alpha}$
の最小値を求めよ。
2023東京大学文系過去問
この動画を見る
$\Large\boxed{1}$ kを正の実数とし、2次方程式$x^2+x-k$=0 の2つの実数解をα,βとする。
kがk>2の範囲を動くとき、
$\displaystyle\frac{\alpha^3}{1-\beta}$+$\displaystyle\frac{\beta^3}{1-\alpha}$
の最小値を求めよ。
2023東京大学文系過去問
基本対称式 あれで出そうよ
単元:
#数Ⅱ#複素数と方程式#解と判別式・解と係数の関係#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$\begin{eqnarray}
\left\{
\begin{array}{l}
\alpha+\beta+\delta=1 \\
\alpha\beta+\beta\delta+\delta\alpha=2,
\alpha\beta\delta=3
\end{array}
\right.
\end{eqnarray}
①\dfrac{1}{\alpha^2}+\dfrac{1}{\beta^2}+\dfrac{1}{\delta^2},
②\dfrac{1}{\alpha^3}+\dfrac{1}{\beta^3}+\dfrac{1}{\delta^3}$
この動画を見る
$\begin{eqnarray}
\left\{
\begin{array}{l}
\alpha+\beta+\delta=1 \\
\alpha\beta+\beta\delta+\delta\alpha=2,
\alpha\beta\delta=3
\end{array}
\right.
\end{eqnarray}
①\dfrac{1}{\alpha^2}+\dfrac{1}{\beta^2}+\dfrac{1}{\delta^2},
②\dfrac{1}{\alpha^3}+\dfrac{1}{\beta^3}+\dfrac{1}{\delta^3}$
福田の1.5倍速演習〜合格する重要問題045〜東北大学2017年度理系第1問〜絶対値の付いた2次関数のグラフと直線の共有点の個数
単元:
#数Ⅰ#数Ⅱ#大学入試過去問(数学)#2次関数#複素数と方程式#2次関数とグラフ#解と判別式・解と係数の関係#学校別大学入試過去問解説(数学)#東北大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}} a,bを実数とする。y=|x^2-4|で表される曲線をCとし、\\
y=ax+bで表される直線をlとする。\\
\\
(1)lが点(-2,0)を通り、lとCがちょうど3つの共有点をもつような\\
a,bの条件を求めよ。\\
\\
(2)lとCがちょうど3つの共有点をもつような点(a,b)の軌跡を\\
ab平面上に図示せよ。
\end{eqnarray}
2017東北大学理系過去問
この動画を見る
\begin{eqnarray}
{\Large\boxed{1}} a,bを実数とする。y=|x^2-4|で表される曲線をCとし、\\
y=ax+bで表される直線をlとする。\\
\\
(1)lが点(-2,0)を通り、lとCがちょうど3つの共有点をもつような\\
a,bの条件を求めよ。\\
\\
(2)lとCがちょうど3つの共有点をもつような点(a,b)の軌跡を\\
ab平面上に図示せよ。
\end{eqnarray}
2017東北大学理系過去問
4次方程式の解と係数の関係?
単元:
#数Ⅱ#複素数と方程式#解と判別式・解と係数の関係#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
x⁴+2x³+3x²+4x+1=0の4つの解をα,β,γ,δとおくとき
(α⁴-1)(β⁴-1)(γ⁴-1)(δ⁴-1)の値を求めよ
この動画を見る
x⁴+2x³+3x²+4x+1=0の4つの解をα,β,γ,δとおくとき
(α⁴-1)(β⁴-1)(γ⁴-1)(δ⁴-1)の値を求めよ
【数Ⅱ】複素数と方程式:解と係数の関係:「解と係数の関係」の基本を10分でマスター!
単元:
#数Ⅱ#複素数と方程式#解と判別式・解と係数の関係#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
解と係数の関係の基本を10分でマスター!例題も4問解説!
この動画を見る
解と係数の関係の基本を10分でマスター!例題も4問解説!
福田の1.5倍速演習〜合格する重要問題022〜一橋大学2016年度文系数学第5問〜ベクトルの絶対値の比の範囲
単元:
#数Ⅱ#大学入試過去問(数学)#複素数と方程式#平面上のベクトル#解と判別式・解と係数の関係#平面上のベクトルと内積#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)#数C
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{5}} 平面上の2つのベクトル\overrightarrow{ a }と\overrightarrow{ b }は零ベクトルではなく、\overrightarrow{ a }と\overrightarrow{ b }のなす角度は\\
60°である。このとき\\
r=\frac{|\overrightarrow{ a }+2\overrightarrow{ b }|}{|2\overrightarrow{ a }+\overrightarrow{ b }|} \\
のとりうる値の範囲を求めよ。 \\
\end{eqnarray}
2016一橋大学文系過去問
この動画を見る
\begin{eqnarray}
{\Large\boxed{5}} 平面上の2つのベクトル\overrightarrow{ a }と\overrightarrow{ b }は零ベクトルではなく、\overrightarrow{ a }と\overrightarrow{ b }のなす角度は\\
60°である。このとき\\
r=\frac{|\overrightarrow{ a }+2\overrightarrow{ b }|}{|2\overrightarrow{ a }+\overrightarrow{ b }|} \\
のとりうる値の範囲を求めよ。 \\
\end{eqnarray}
2016一橋大学文系過去問
連立二元二次方程式2023
単元:
#数Ⅱ#複素数と方程式#解と判別式・解と係数の関係#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
x²=2023+y
y²=2023+x
このときxyの値を求めよ
この動画を見る
x²=2023+y
y²=2023+x
このときxyの値を求めよ