【数学】体系問題集 数学3 数式・関数編 111 実数解が存在することの証明 - 質問解決D.B.(データベース)

【数学】体系問題集 数学3 数式・関数編 111 実数解が存在することの証明

問題文全文(内容文):
a,b,cは実数の定数で、a≠0とする。2次方程式ax²+bx+c=0が、次の各場合に必ず実数解をもつことを証明せよ。

(1)$b=\frac{a}{2}+2c$

(2)$a+c=0$

(3)aとcが異符号
チャプター:

0:00 オープニング
0:05 問題
0:10 (1)の解説
1:33 (2)の解説
2:42 (3)の解説

単元: #数Ⅱ#複素数と方程式#解と判別式・解と係数の関係#数学(高校生)
教材: #体系数学#体系数学問題集3(数式・関数編)
指導講師: 理数個別チャンネル
問題文全文(内容文):
a,b,cは実数の定数で、a≠0とする。2次方程式ax²+bx+c=0が、次の各場合に必ず実数解をもつことを証明せよ。

(1)$b=\frac{a}{2}+2c$

(2)$a+c=0$

(3)aとcが異符号
投稿日:2024.02.09

<関連動画>

【数Ⅱ】複素数と方程式:解の公式は係数が実数のときのみ使用可能

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の等式を満たす実数xの値を求めよう。
(2+i)x²-(1+6i)x-2(3-4i)=0
この動画を見る 

【数Ⅱ】高2生必見!! 2020年度 第2回 全統高2模試 大問5_式と証明・複素数と方程式

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#全統模試(河合塾)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
aを実数の定数とする。xの3次式 P(x)=x³+3x²+3x+a があり、P(-2)=0を満たす。
(1)aの値を求めよ。
(2)方程式P(x)=0を解け。
(3)方程式P(x)=0の虚数解のうち、虚部が正であるものをα、虚部が負であるもの をβと表す。また、方程式P(x)=0の実数解をγと表す。さらに、A=α+1、B=β+1、 C=γ+1とする。
(i)A²+B²、A³、B³の3つの値をそれぞれ求めよ。
(ii)nを2020以下の正の整数とする。A^n+B^n+C^n=0を満たすnの個数を求めよ。
この動画を見る 

複素数と方程式 4STEP数Ⅱ79,80,81 複素数【ホーン・フィールドがていねいに解説】

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#数学(高校生)
教材: #4STEP(4ステップ)数学#4STEP数学Ⅱ+BのB問題解説(新課程2022年以降)#複素数と方程式
指導講師: 理数個別チャンネル
問題文全文(内容文):
1 (4STEP問題79)
次の式を計算せよ。
(1){(3-2i)/(2+3i)}²
(2){(-1+√3 i)/2}³
(3)(2+i)³+(2-i)³
(4)(1/i-i)(2/i+i)i³
(5) (2+3i)/(3-2i) +(2-3i)/(3+2i)
(6)1/i+1-i+i²-i³+i⁴

2 (4STEP問題80)
x¬=(-1+√5 i)/2,y=(-1-√5 i )/2 であるとき、次の式の値を求めよ。
(1)x+y
(2)xy
(3)x²+y²
(4)x³+y³+x²y+xy²

3 (4STEP問題81)
次の等式を満たす実数x,yの値を求めよ。
(1)(2i+3)x+(2-3i)y=5-i
(2)(1-2i)(x+yi)=2+6i
(3)(1+xi)²+(x+i)²=0
(4)1/(2+i) + 1/(x+yi) =1/2
この動画を見る 

【数Ⅱ】複素数と方程式:3次方程式が2重解を持つ条件:x³+6x²+ax+b=0が-1を2重解としてもつとき、定数a,bの値を求めよ。また、残りの解を求めよ。

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
教材: #ニュースコープ#ニュースコープ数学Ⅱ・B#その他(中高教材)
指導講師: 理数個別チャンネル
問題文全文(内容文):
x³+6x²+ax+b=0が-1を2重解としてもつとき、定数a,bの値を求めよ。また、残りの解を求めよ。
この動画を見る 

複素数と方程式 4STEP数Ⅱ 94,95 2次方程式の解と判別式【ホーン・フィールドがていねいに解説】

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#解と判別式・解と係数の関係#数学(高校生)
教材: #4STEP(4ステップ)数学#4STEP数学Ⅱ+BのB問題解説(新課程2022年以降)#複素数と方程式
指導講師: 理数個別チャンネル
問題文全文(内容文):
(4STEP問題94)
2つの2次方程式x²+mx+m=0, x²+mx+1=0がともに虚数解をもつとき、定数mの値の範囲を定めよ。

(4STEP問題95)
2つの2次方程式x²+2mx-2m=0, x²+(m-1)x+m²=0が次の条件を満たすとき、定数mの値の範囲を定めよ。
(1)少なくとも一方が実数解をもつ
(2)一方だけが実数解をもつ
この動画を見る 
PAGE TOP