福田次郎 - 質問解決D.B.(データベース) - Page 24

福田次郎

※下の画像部分をクリックすると、先生の紹介ページにリンクします。

静岡県の公立高校の数学教員として長年受験指導あり。
藤枝東高校8年、静岡市立高校8年、静岡高校12年。特に静岡高校では9年間にわたり進路指導主任として大学側とも関係を構築。
その経験を活かして数学の動画を日々配信中!
数学関係のアプリも多数手がけています。
過去問を中心に受験対策数学動画多数。

福田の数学〜慶應義塾大学2022年環境情報学部第4問〜ピラミッドを切って体積を求める

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#面積、体積#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{4}}\ (1)xyz空間において|x|+|y|+|z| \leqq 1を満たす立体の体積は\ \frac{\boxed{\ \ アイ\ \ }}{\boxed{\ \ ウエ\ \ }}\ である。\\
(2)aを実数としたとき、xyz空間において\\
|x-a|+|y-a|+|z| \leqq 1,\ \ \ x \geqq 0,\ \ \ y \geqq 0,\ \ \ z \geqq 0\ \ \ \\
を満たす立体の体積V(a)は\\
\\
(\textrm{a})a \lt \frac{\boxed{\ \ オカ\ \ }}{\boxed{\ \ キク\ \ }}\ のとき、V(a)=0,\\
\\
(\textrm{b})\frac{\boxed{\ \ オカ\ \ }}{\boxed{\ \ キク\ \ }} \leqq a \lt 0\ のとき、V(a)=\frac{\boxed{\ \ ケコ\ \ }a^3+\boxed{\ \ サシ\ \ }a^2+\boxed{\ \ スセ\ \ }a+\boxed{\ \ ソタ\ \ }}{\boxed{\ \ チツ\ \ }},\\
\\
(\textrm{c})0 \leqq a \lt \frac{\boxed{\ \ テト\ \ }}{\boxed{\ \ ナニ\ \ }}\ のとき、V(a)=\frac{\boxed{\ \ ヌネ\ \ }a^3+\boxed{\ \ ノハ\ \ }a+\boxed{\ \ ヒフ\ \ }}{\boxed{\ \ ヘホ\ \ }},\\
\\
(\textrm{d})\frac{\boxed{\ \ テト\ \ }}{\boxed{\ \ ナニ\ \ }} \leqq a \lt \frac{\boxed{\ \ マミ\ \ }}{\boxed{\ \ ムメ\ \ }}\ のとき、V(a)=\frac{\boxed{\ \ モヤ\ \ }a^3+\boxed{\ \ ユヨ\ \ }a^2+\boxed{\ \ ラリ\ \ }a}{\boxed{\ \ ルレ\ \ }},\\
\\
(\textrm{e})\frac{\boxed{\ \ マミ\ \ }}{\boxed{\ \ ムメ\ \ }} \leqq a\ のとき、V(a)=\frac{\boxed{\ \ ロワ\ \ }}{\boxed{\ \ ヲン\ \ }}
\end{eqnarray}

2022慶應義塾大学環境情報学部過去問
この動画を見る 

福田の数学〜慶應義塾大学2022年環境情報学部第3問〜4次関数のグラフの接線と囲まれた面積

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#微分法と積分法#指数関数#学校別大学入試過去問解説(数学)#不定積分・定積分#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{3}}\ xy平面上の曲線Cをy=x^2(x-1)(x+2)とする。
\\(1)Cに2点で下から接する直線Lの方程式は\\
\\
y=\frac{\boxed{\ \ アイウ\ \ }}{\boxed{\ \ エオカ\ \ }}\ x+\frac{\boxed{\ \ キクケ\ \ }}{\boxed{\ \ コサシ\ \ }}\ である。\\
\\
(2)CとLが囲む図の斜線部分の面積(※動画参照)は\\
\\
\frac{\boxed{\ \ スセソ\ \ }\sqrt{\boxed{\ \ タチツ\ \ }}}{\boxed{\ \ テトナ\ \ }}\ となる。\\
\\
ただし、次の公式を使ってもかまわない(m,nは正の整数)\\
\int_{\alpha}^{\beta}(x-\alpha)^m(x-\beta)^ndx=\frac{(-1)^nm!n!}{(m+n+1)!}(\beta-\alpha)^{m+n+1}\\
\end{eqnarray}

2022慶應義塾大学環境情報学部過去問
この動画を見る 

福田の数学〜慶應義塾大学2022年環境情報学部第2問〜三角関数の最大最小

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#微分法と積分法#加法定理とその応用#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{2}}\ 0 \leqq \theta \leqq \pi のとき、関数\ y=\sin3\theta-3\cos(\theta-\frac{\pi}{6})の最大値と最小値を求めたい。\\
(1)x=\cos(\theta-\frac{\pi}{6})\ とおくと、もとの関数は\hspace{159pt}\\
\\
y=\boxed{\ \ アイ\ \ }\ x^3+\boxed{\ \ ウエ\ \ }\ x^2+\boxed{\ \ オカ\ \ }\ x+\boxed{\ \ キク\ \ }\ \\
\\
と書き直すことができる。\hspace{220pt}\\
(2)このことから、もとの関数の最大値は\theta=\frac{\boxed{\ \ ケコ\ \ }}{\boxed{\ \ サシ\ \ }}\ \piのときに\boxed{\ \ スセ\ \ }\sqrt{\boxed{\ \ ソタ\ \ }}\\
であり、最小値は\theta=\frac{\boxed{\ \ チツ\ \ }}{\boxed{\ \ テト\ \ }}\ \piのときに\boxed{\ \ ナニ\ \ }\sqrt{\boxed{\ \ ヌネ\ \ }}であることがわかる。\\
\end{eqnarray}

2022慶應義塾大学環境情報学部過去問
この動画を見る 

福田の数学〜慶應義塾大学2022年環境情報学部第1問〜4つの音で作るチャイムの種類

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#場合の数#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{1}}\ ある学校では、ドミソシの4つの音を4つ組み合わせてチャイムを作り、\\
授業の開始・終了などを知らせるために鳴らしている。\\
チャイムは、図1(※動画参照)のように4×4の格子状に並んだ16個のボタン\\
を押すことによって作ることができる。縦方向は音の種類を表し、横方向は時間\\
を表している。例えば、ドミソシという音を1つずつ、\\
順番に鳴らすチャイムを作るには、図2(※動画参照)のようにボタンを押せばよい。\\
ただし、鳴らすことのできる音の数は縦1列あたり1つだけであり、\\
音を鳴らさない無音は許されず、それぞれの例で必ず1つの音を選ばなければならないとする。\\
(1)4つの音を1回ずつ鳴らすことを考えた場合、チャイムの種類は\ \boxed{\ \ アイウ\ \ }\ 通り。\\
(2)(1)に加えて、同じ音を連続して2回繰り返すことを1度だけしてもかまわない(例:ドミミソ)\\
とした場合、\\
チャイムの種類は合わせて\ \boxed{\ \ エオカ\ \ }\ 通りになる。\\
ただし、連続する音以外は高々1回までしか鳴らすことはできず、\\
それらは連続する音とは異ならなければならないものとする。\\
(3)(1)と(2)に加えて、同じ音を連続して4回繰り返すチャイムを許すと、\\
可能なチャイムの種類は合わせて\ \boxed{\ \ キクケ\ \ }\ 通りになる。\\
\end{eqnarray}

2022慶應義塾大学環境情報学部過去問
この動画を見る 

福田の数学〜慶應義塾大学2022年総合政策学部第6問〜新型ウィルス感染拡大による休業要請と補償金の期待値

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{6}}\ 新型ウイルスの感染拡大にともなって、ある国の自治体がある飲食店に1ヵ月間\\
の休業要請を行い、もし飲食店が要請に応じた場合、自治体は飲食店に補償金を\\
払うことになったものとする。いま、この飲食店は補償金が90万円以上であれば\\
要請に応じ、90万円未満なら要請に応じないものとする。補償金の額をC万円と\\
したとき、(C-90)万円を飲食店の超過利益と呼ぶことにする。もしC \lt 90\\
であれば、飲食店は要請に応じず、超過利益は0万円とする。\\
また、この自治体は支払うことのできる補償金の上限が定まっていて、それがD万円\\
(D \geqq C)であったとき、飲食店がC万円で要請に応じた場合、(D-C)万円は\\
補償金の節約分となる。ただし、飲食店が要請に応じなかった場合には、補償金の\\
節約分は0万円とする。\\
(1)まず、自治体が飲食店に休業要請する場合の補償金の額C万円を提示する場合\\
について考える。いま、自治体の補償金の上限が125万円であったとき、自治体\\
の補償金の節約分が最も大きくなるのはC=\boxed{\ \ アイウ\ \ }\ 万円の場合である。\\
(2)次に、飲食店が自治体に休業要請し、自治体が申請を受理した場合に、飲食店\\
は休業と引き替えに補償金を受け取ることができる場合について考える。なお、\\
飲食店は休業申請をする際に90万円以上の補償金の額を自治体に提示するもの\\
とする。また、ここでは自治体が支払うことができる補償金の上限については、\\
125万円か150万円か175万円のどれかに定まっているが公表されておらず、\\
飲食店は125万円である確率が\frac{2}{5}、150万円である確率が\frac{1}{5}、175万円である\\
確率が\frac{2}{5}であると予想しているものとする。\\
ただし、飲食店が提示した補償金の額が、実際に自治体が支払うことができる上限\\
を超えていた場合、自治体は申請を受理せず、そのときの補償金の節約分は0万円\\
になり、申請が受理されなければ、飲食店は休業せず、超過利益は0万円になる。\\
たとえば、飲食店が休業申請をする際にC=160万円を提示した場合、飲食店\\
の超過利益(の期待値)は\boxed{\ \ エオカ\ \ }\ 万円となる。\\
そこで、飲食店が超過利益(の期待値)を最も大きくする補償金の額を休業申請\\
の際に自治体に提示したとすると\\
(\textrm{a})飲食店の超過利益(の期待値)は\boxed{\ \ キクケ\ \ }\ 万円であり、\\
(\textrm{b})自治体の補償金の上限が実際は125万円であった場合、補償金の節約分は\\
\boxed{\ \ コサシ\ \ }\ 万円。\\
(\textrm{c})自治体の補償金の上限が実際は175万円であった場合、補償金の節約分は\\
\boxed{\ \ スセソ\ \ }\ 万円。\\
\end{eqnarray}

2022慶應義塾大学総合政策学部過去問
この動画を見る 

福田の数学〜慶應義塾大学2022年総合政策学部第5問〜等脚台形の外接円の中心の位置ベクトル

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#図形の性質#周角と円に内接する四角形・円と接線・接弦定理#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{5}}\ いま、ADを下底、BCを上底とする台形ABCDにおいて、\angle BAD=\angle CDA=60°,\\
|\overrightarrow{ AB }|=2,|\overrightarrow{ BC }|=1となっている。\\
\\
(1)|\overrightarrow{ BD }|=\sqrt{\boxed{\ \ アイ\ \ }}\ であり、台形ABCDの外接円の半径は\frac{\sqrt{\boxed{\ \ ウエ\ \ }}}{\boxed{\ \ オカ\ \ }}である。\\
\\
(2)外接円の中心をOとするとき、内積\overrightarrow{ AB }・\overrightarrow{ AO }=\boxed{\ \ キク\ \ },\overrightarrow{ AD }・\overrightarrow{ AO }=\frac{\boxed{\ \ ケコ\ \ }}{\boxed{\ \ サシ\ \ }}である。\\
\\
(3)\overrightarrow{ AO }=\frac{\boxed{\ \ スセ\ \ }}{\boxed{\ \ ソタ\ \ }}\ \overrightarrow{ AB }+\frac{\boxed{\ \ チツ\ \ }}{\boxed{\ \ テト\ \ }}\ \overrightarrow{ AD }\ である。
\end{eqnarray}

2022慶應義塾大学総合政策学部過去問
この動画を見る 

福田の数学〜慶應義塾大学2022年総合政策学部第4問〜折り紙を折ってできる線分、角、面積を求める

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#図形と計量#三角比への応用(正弦・余弦・面積)#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{4}}\ 一辺の長さが2の正方形の折り紙 ABCD を次の手順にしたがって折る。\\
(1) A と B、DとCを合わせて ADがBCに重なるように谷折りし、折り目をつけて\\
開く。AB および DC 上にあるこの谷折り線の端点をそれぞれEおよびFとする。\\
(2 ) AF が谷折り線になるよう に谷折りし、折り目をつけて開く。\\
(3) A を谷折り線の端点の1つとして、AB がAF 上に重なるように谷折りし、折り\\
目をつけて開く。BC上にあるこの谷折り線のもう1つの端点をGとする。\\
(4) D と A、CとBを合わせてDCがABに重なるように谷折りして、折り目をつけ\\
る。AD およびBC 上にあるこの谷折り線の端点をそれぞれHおよびIとする。\\
(5) C と B がいずれもGと重なるように2枚重ねて谷折りし、CIおよびBI 上に折り\\
目をつけて開く。この折り目の点をそれぞれ」およびKとする (A, E, B, K は\\
それぞれ D, F, C, J と重なっているため図中には表示していない)\\
(6) HI を谷折り線とする谷折りを開く (A, E, B, KはそれぞれD, F, C, J と重なって\\
いるため図中には表示していない)\\
(7) K を谷折り線の端点の1つとして、JがAB上に重なるように谷折りし、折り目\\
をつける。AD上にあるこの谷折り線のもう1つの端点をしとし、AB上にある\\
Jが重なる点をMとする。\\
(8)KLを谷折り戦とする谷折りを開く(MはJと重なっているため表示していない)\\
(9)Mを谷折り線の端点の1つとして、AとDがそれぞれBEとCF上にくるように\\
谷折りし、折り目をつけて開く。DC上にあるこの谷折り線のもう1つ端点を\\
Nとする。\\
(10)折るのをやめる。\\
\\
このとき、BG=\boxed{\ \ アイ\ \ }+\sqrt{\boxed{\ \ ウエ\ \ }},JK=\boxed{\ \ オカ\ \ }+\sqrt{\boxed{\ \ キク\ \ }},JM=\boxed{\ \ ケコ\ \ },\\
\\
\cos\angle JKM=\frac{\boxed{\ \ サシ\ \ }+\boxed{\ \ スセ\ \ }\sqrt{\boxed{\ \ ソタ\ \ }}}{\boxed{\ \ チツ\ \ }}\\
\\
ここで、\triangle JKMの面積をS_1,\triangle JMNの面積をS_2とすると\\
\\
\frac{S_2}{S_1}=\frac{\boxed{\ \ テト\ \ }+\sqrt{\boxed{\ \ ナニ\ \ }}}{\boxed{\ \ ヌネ\ \ }}\\
\\
となる。\\
※(1)~(10)の画像は動画参照
\end{eqnarray}

2022慶應義塾大学総合政策学部過去問
この動画を見る 

福田の数学〜慶應義塾大学2022年総合政策学部第3問〜定積分で表された関数の最小値

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#不定積分・定積分#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{3}}\ 実数k \gt 0 に対して、関数A(k)=\int_0^2|x^2-kx|dx\ とすると\\
A(k)=
\left\{\begin{array}{1}
\frac{\boxed{\ \ アイ\ \ }\ k^3+\ \boxed{\ \ ウエ\ \ }\ k^2+\ \boxed{\ \ オカ\ \ }\ k+\ \boxed{\ \ キク\ \ }}{\boxed{\ \ ケコ\ \ }}\hspace{25pt}(0 \lt k \lt \boxed{\ \ サシ\ \ })\\
\\
\frac{\boxed{\ \ スセ\ \ }\ k+\ \boxed{\ \ ソタ\ \ }}{\boxed{\ \ チツ\ \ }}\hspace{103pt}(\boxed{\ \ サシ\ \ } \leqq k)\\
\end{array}
\right.\\
\\となる。この関数A(k)が最小となるのはk=\sqrt{\boxed{\ \ テト\ \ }}\ のときで、そのときの\\
\\
A(k)の値は\frac{\boxed{\ \ ナニ\ \ }+\boxed{\ \ ヌネ\ \ }\sqrt{\boxed{\ \ ノハ\ \ }}}{\boxed{\ \ ヒフ\ \ }}
\end{eqnarray}

2022慶應義塾大学総合政策学部過去問
この動画を見る 

福田の数学〜慶應義塾大学2022年総合政策学部第2問〜デコボコ数を数える

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#場合の数#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{2}}\ 10進法で表したときm桁(m \gt 0)である正の整数nの第i桁目(1 \leqq i \leqq m)を\\
m_iとしたとき、i≠jのときn_i≠n_jであり、かつ、次の(\textrm{a})または(\textrm{b})のいずれか\\
が成り立つとき、nを10進法m桁のデコボコ数と呼ぶことにする。\\
(\textrm{a})1 \leqq i \lt mであるiに対して、iが奇数の時n_i \lt n_{i+1}となり、\\
iが偶数の時n_i \gt n_{i+1}となる。\\
(\textrm{b})1 \leqq i \lt mであるiに対して、iが奇数の時n_i \gt n_{i+1}となり、\\
iが偶数の時n_i \lt n_{i+1}となる。\\
例えば、361は(\textrm{a})を満たす10進法3桁のデコボコ数であり、52409は(\textrm{b})を\\
満たす10進法5桁のデコボコ数である。なお、4191は(\textrm{a})を満たすが「i≠jのとき\\
n_i≠n_jである」条件を満たさないため、10進法4桁のデコボコ数ではない。\\
(1)nが10進法2桁の数(10 \leqq n \leqq 99)の場合、n_1≠n_2であれば(\textrm{a})または(\textrm{b})を\\
満たすため、10進法2桁のデコボコ数は\ \boxed{\ \ アイ\ \ }\ 個ある。\\
(2)nが10進法3桁の数(100 \leqq n \leqq 999)の場合、(\textrm{a})を満たすデコボコ数は\\
\boxed{\ \ ウエオ\ \ }個、(\textrm{b})を満たすデコボコ数は\boxed{\ \ カキク\ \ }個あるため、\\
10進法3桁のデコボコ数は合計\boxed{\ \ ケコサ\ \ }個ある。\\
(3)nが10進法4桁の数(1000 \leqq n \leqq 9999)の場合、(\textrm{a})を満たすデコボコ数は\\
\boxed{\ \ シスセソ\ \ }個、(\textrm{b})を満たすデコボコ数は\boxed{\ \ タチツテ\ \ }個あるため、\\
10進法4桁のデコボコ数は合計\boxed{\ \ トナニヌ\ \ }個ある。また10進法4桁のデコボコ数\\
の中で最も大きなものは\boxed{\ \ ネノハヒ\ \ }、最も小さなものは\boxed{\ \ フヘホマ\ \ }である。\\
\end{eqnarray}

2022慶應義塾大学総合政策学部過去問
この動画を見る 

福田の数学〜慶應義塾大学2022年総合政策学部第1問〜ガウス記号を含む数列の和

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}}\ 実数xに対して、x以下の最大の整数を[x]と表すことにする。\hspace{120pt}\\
いま、数列\left\{a_n\right\}を\hspace{290pt}\\
a_n=[\sqrt{2n}+\frac{1}{2}]\hspace{200pt}\\
と定義すると\hspace{316pt}\\
a_1=\boxed{\ \ ア\ \ },\ \ \ \ a_2=\boxed{\ \ イ\ \ },\ \ \ \ a_3=\boxed{\ \ ウ\ \ },\ \ \ \ a_4=\boxed{\ \ エ\ \ },\ \ \ \ a_5=\boxed{\ \ オ\ \ },\ \ \ \ a_6=\boxed{\ \ カ\ \ },\ \ \ \ \\
となる。このとき、a_n=10となるのは、\boxed{\ \ キク\ \ } \leqq n \leqq \boxed{\ \ ケコ\ \ }\ の場合に限られる。\hspace{20pt}\\
また、\sum_{n=1}^{\boxed{\ \ ケコ\ \ }}a_n=\boxed{\ \ サシスセ\ \ }である。\hspace{160pt}\\
\end{eqnarray}

2022慶應義塾大学総合政策学部過去問
この動画を見る 

福田の数学〜慶應義塾大学2022年商学部第4問〜条件付き確率と常用対数の計算

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{4}}\ ある金属1グラムの価格は正の実数値をとり、ある日の価格は前日に比べ、\\
確率\frac{1}{2}で1.08倍になり(上昇)、確率\frac{1}{2}で0.96倍になる(下落)。この金属の\\
今日(0日目とする)の価格をAとして、以下の問いに答えなさい。ただし、\\
必要ならば、\log_{10}2=0.3010,\ \log_{10}3=0.4771を用いなさい。\\
(1)10日目の価格がAよりも高くなるのは、\boxed{\ \ ア\ \ }日以上で価格が上昇したとき\\
である。また、そのような確率は\frac{\boxed{\ \ イウ\ \ }}{\boxed{\ \ エオ\ \ }}\ である。\\
(2)5日目の価格がAよりも低かった時、10日目の価格がAよりも高い確率\\
は\frac{\boxed{\ \ カキ\ \ }}{\boxed{\ \ クケ\ \ }}\ である。\\
(3)10日目の価格がAよりも高かった時、1日目と2日目のうち少なくとも\\
1回は価格が下落していた確率は\frac{\boxed{\ \ コサシ\ \ }}{\boxed{\ \ スセソ\ \ }}\ である。
\end{eqnarray}

2022慶應義塾大学商学部過去問
この動画を見る 

福田の数学〜慶應義塾大学2022年商学部第3問〜絶対値の付いた2次関数のグラフと直線の共有点と面積

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#2次関数#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{3}}\ mを実数とし、関数y=|x^2-5x+4|のグラフをC、直線y=mxをlとする。\\
(1)グラフCと直線lの共有点の個数は\\
\boxed{\ \ アイ\ \ } \lt m \lt \boxed{\ \ ウ\ \ }のとき0個\\
m=\boxed{\ \ エオ\ \ }のとき1個\\
m \lt \boxed{\ \ カキ\ \ },\ m=\boxed{\ \ ク\ \ },\ またはm \gt \boxed{\ \ ケ\ \ }のとき2個\\
m=\boxed{\ \ コ\ \ }のとき3個\\
\boxed{\ \ サ\ \ } \lt m \lt \boxed{\ \ シ\ \ }のとき4個\\
以下、グラフCと直線lの共有点の個数が3個の場合を考え、\\
グラフCと直線lの共有点を、x座標が小さい順にP,Q,Rとする。\\
\\
(2)3点P,Q,Rのx座標は、順に\boxed{\ \ ス\ \ }-\sqrt{\boxed{\ \ セ\ \ }},\ \boxed{\ \ ソ\ \ },\ \boxed{\ \ タ\ \ }+\sqrt{\boxed{\ \ チ\ \ }}\ である。\\
\\
(3)グラフCと線分QRで囲まれた部分の面積は\frac{-\ \boxed{\ \ ツ\ \ }+\boxed{\ \ テト\ \ }\sqrt{\boxed{\ \ ナ\ \ }}}{\boxed{\ \ ニ\ \ }}\ である。
\end{eqnarray}

2022慶應義塾大学商学部過去問
この動画を見る 

福田の数学〜慶應義塾大学2022年商学部第2問〜空間ベクトルと平面の方程式

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#空間ベクトル#ベクトルと平面図形、ベクトル方程式#空間ベクトル#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{2}}\ 点Oを原点とするxyz座標空間に、2点A(2,3,1),\ B(-2,1,3)をとる。\\
また、x座標が正の点Cを、\overrightarrow{ OC }を\overrightarrow{ OA }と\overrightarrow{ OB }に垂直で、|\overrightarrow{ OC }|=8\sqrt3となるように定める。\\
(1)\triangle OABの面積は\boxed{\ \ ア\ \ }\sqrt{\boxed{\ \ イ\ \ }}\ である。\\
(2)点Cの座標は(\boxed{\ \ ウ\ \ },\ \boxed{\ \ エオ\ \ },\ \boxed{\ \ カ\ \ })である。\\
(3)四面体OABCの体積は\boxed{\ \ キク\ \ }\ である。\\
(4)平面ABCの方程式は\ x+\boxed{\ \ ケ\ \ }\ y+\boxed{\ \ コ\ \ }\ z-\ \boxed{\ \ サシ\ \ }=0である。\\
(5)原点Oから平面ABCに垂線OHを下ろしたとき、点Hの座標は\\
(\frac{\boxed{\ \ ス\ \ }}{\boxed{\ \ セソ\ \ }},\frac{\boxed{\ \ タ\ \ }}{\boxed{\ \ チ\ \ }},\frac{\boxed{\ \ ツテ\ \ }}{\boxed{\ \ トナ\ \ }})\\
である。
\end{eqnarray}

2022慶應義塾大学商学部過去問
この動画を見る 

福田の数学〜慶應義塾大学2022年商学部第1問(3)〜放物線の法線

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}}\ (3)放物線上の点Pにおける法線とは、点Pを通り点Pにおける接線に\\
垂直な直線である。放物線C_1:y=x^2上の点P(a,a^2)(ただし、a≠0とする)\\
における法線の方程式はy=\boxed{\ \ ア\ \ }\ である。\\
また、実数p,qに対し、放物線C_2:y=-(x-p)^2+q上のある点における\\
法線が、放物線C_1上の点(1,1)における法線と一致するとき、pとqについて\\
q=\boxed{\ \ イ\ \ }\ という関係式が成り立つ。\\
\end{eqnarray}

2022慶應義塾大学商学部過去問
この動画を見る 

福田の数学〜慶應義塾大学2022年商学部第1問(2)〜三角不等式の一般解

アイキャッチ画像
単元: #大学入試過去問(数学)#三角関数#三角関数とグラフ#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}}\ (2)xを変数とする2次方程式\ x^2+(2\sqrt2\cos\theta)x+\sqrt2\sin\theta=0\ が\\
異なる2つの実数解をもつような実数\thetaの範囲は\boxed{\ \ ア\ \ }\ である。
\end{eqnarray}

2022慶應義塾大学商学部過去問
この動画を見る 

福田の数学〜慶應義塾大学2022年商学部第1問(1)〜倍数の個数を数える

アイキャッチ画像
単元: #数Ⅰ#数A#大学入試過去問(数学)#数と式#集合と命題(集合・命題と条件・背理法)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}}\ (1)1から1000までの整数のうち、2,3,5の少なくとも2つで割り切れる数\\
は\boxed{\ \ アイウ\ \ }\ 個あり、2,3,5の少なくとも1つで割り切れ、\\
かつ6で割り切れない数は\boxed{\ \ エオカ\ \ }\ 個ある。
\end{eqnarray}

2022慶應義塾大学商学部過去問
この動画を見る 

福田の数学〜慶應義塾大学2022年経済学部第6問〜定積分で表された関数と面積の2等分

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#不定積分・定積分#面積、体積#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{6}}\ 関数F(x)=\frac{1}{2}+\int_0^{x+1}(|t-1|-1)dtに対し、\\
y=F(x)で定まる曲線をCとする。\\
(1)F(x)を求めよ。\\
(2)Cとx軸の共有点のうち、x座標が最小の点をP、最大の点をQ\\
とする。PにおけるCの接線をlとするとき、Cとlで囲まれた図形の面積Sを求めよ。\\
また、Qを通る直線mがSを2等分するとき、lとmの交点Rの座標を求めよ。
\end{eqnarray}

2022慶應義塾大学経済学部過去問
この動画を見る 

福田の数学〜慶應義塾大学2022年経済学部第5問〜指数対数の性質と格子点と2次関数の最大

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#2次関数#指数関数と対数関数#指数関数#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{5}}\ aを2以上の整数、pを整数とし、s=2^{2p+1}とおく。実数x,yが等式\\
2^{a+1}\log_23^x+2x\log_2(\frac{1}{3})^x=\log_s9^y\\
を満たすとき、yをxの関数として表したものをy=f(x)とする。\\
(1)対数の記号を使わずに、f(x)をa,pおよびxを用いて表せ。\\
(2)a=2,\ p=0とする。このとき、n \leqq f(m)を満たし、かつ、m+nが正となる\\
ような整数の組(m,n)の個数を求めよ。\\
(3)y=f(x)(0 \leqq x \leqq 2^{a+1})の最大値が2^{3a}以下となるような整数pの\\
最大値と最小値を、それぞれaを用いて表せ。
\end{eqnarray}

2022慶應義塾大学経済学部過去問
この動画を見る 

福田の数学〜慶應義塾大学2022年経済学部第4問〜空間ベクトルと四面体の体積

アイキャッチ画像
単元: #大学入試過去問(数学)#空間ベクトル#空間ベクトル#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{4}}\ tを実数とする。また、Oを原点とする座標空間内に\\
3点A(4,2,5),\ B(-1,1,1),\ C(2-t,4-3t,6+2t)をとる。\\
(1)\triangle OABの面積を求めよ。\\
(2)4点O,A,B,Cが同一平面上にあるとき、Cの座標を求めよ。\\
(3)点Cがxy平面上にあるとき、四面体OABCの体積Vを求めよ。\\
(4)四面体OABCの体積が(3)で求めたVの3倍となるようなtの値を\\
すべて求めよ。
\end{eqnarray}

2022慶應義塾大学経済学部過去問
この動画を見る 

福田の数学〜慶應義塾大学2022年経済学部第3問〜データの分析と条件付き確率

アイキャッチ画像
単元: #数Ⅰ#数A#大学入試過去問(数学)#場合の数と確率#データの分析#データの分析#確率#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{3}}\ xの関数が印刷されているカード25枚が1つの袋に入っている。\\
その内訳は、11枚に1-3x、9枚に1-2x、4枚に1-2x+2x^2、1枚に1-3x+5x^2である。\\
この袋からカードを1枚取り出し、印刷されている関数を記録してから袋に戻すことを\\
100回繰り返したところ、記録の内訳は1-3xが46回、1-2xが35回、1-2x+2x^2が15回、\\
1-3x+5x^2が4回であった。\\
(1)記録された関数の実数xにおける値をa_1,a_2,\ldots,a_{100}とおく。\\
a_1,a_2,\ldots,a_{100}の平均値は、xの値を定めるとそれに対応して値が定まるので、\\
xの関数である。この関数はx=\frac{\boxed{\ \ ア\ \ }}{\boxed{\ \ イ\ \ }}\ のとき最小となり、その値は-\frac{\boxed{\ \ ウエ\ \ }}{\boxed{\ \ オ\ \ }}\ である。\\
(2)記録された関数のx=0からx=1までの定積分をb_1,b_2,\ldots,b_{100}とおく。\\
b_1,b_2,\ldots,b_{100}の平均値は-\frac{\boxed{\ \ カ\ \ }}{\boxed{\ \ キク\ \ }}\ であり、分散は\frac{\boxed{\ \ ケコ\ \ }}{\boxed{\ \ サシ\ \ }}\ である。\\
また、記録された関数のx=1における値をc_1,c_2,\ldots,c_{100}とおくとき、\\
100個のデータの組(b_1,c_1),(b_2,c_2),\ldots,(b_{100},c_{100})の共分散は\frac{\boxed{\ \ スセ\ \ }}{\boxed{\ \ ソタ\ \ }}\ である。\\
(3)カードがすべて袋に入った状態から1枚取り出したとき、印刷されている\\
関数のx=1における値が負である条件の下で、その関数の0から1までの定積分\\
が負である条件つき確率は\frac{\boxed{\ \ チツ\ \ }}{\boxed{\ \ テト\ \ }}\ である。
\end{eqnarray}

2022慶應義塾大学経済学部過去問
この動画を見る 

福田の数学〜慶應義塾大学2022年経済学部第2問〜絶対値を含む漸化式

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{2}}\ 数列\left\{a_n\right\}は\hspace{255pt}\\
a_{n+1}=-|a_n|-\frac{1}{2}a_n+5\hspace{15pt}(n=1,2,3,\ldots)\\
を満たしている。\\
(1)a_1=\frac{1}{2}ならば、a_2=\frac{\boxed{\ \ アイ\ \ }}{\boxed{\ \ ウ\ \ }},\ a_3=-\frac{\boxed{\ \ エオ\ \ }}{\boxed{\ \ カ\ \ }}\ である。\\
(2)-2 \leqq a_n \leqq -1ならばa_{n+1}およびa_{n+2}の取り得る値の範囲は、\\
それぞれ\boxed{\ \ キ\ \ }\leqq a_{n+1} \leqq \frac{\boxed{\ \ ク\ \ }}{\boxed{\ \ ケ\ \ }},\ -\frac{\boxed{\ \ コ\ \ }}{\boxed{\ \ サ\ \ }}\leqq a_{n+1} \leqq -\boxed{\ \ シ\ \ }\ である。\\
以下、a_1=2+(\frac{2}{3})^{10}\ とする。\\
(3)a_n \lt 0となる自然数nの内最小のものをmとすると、m=\boxed{\ \ スセ\ \ }\ である。\\
(4)(3)のmに対して、自然数kが2k \geqq mを満たすとき、\\
a_{2k+2}=-\frac{\boxed{\ \ ソ\ \ }}{\boxed{\ \ タ\ \ }}\ a_{2k}-\frac{\boxed{\ \ チ\ \ }}{\boxed{\ \ ツ\ \ }}\\
より\\
a_{2k}=-\frac{\boxed{\ \ テト\ \ }}{\boxed{\ \ ナ\ \ }}+\frac{3}{\boxed{\ \ ニヌ\ \ }}(-\frac{\boxed{\ \ ネ\ \ }}{\boxed{\ \ ノ\ \ }})^{k-\boxed{\ \ ハ\ \ }}\\
が成り立つ。
\end{eqnarray}

2022慶應義塾大学経済学部過去問
この動画を見る 

福田の数学〜慶應義塾大学2022年経済学部第1問〜円に外接する四角形の性質

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#図形と計量#三角比への応用(正弦・余弦・面積)#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}}\ 座標平面上の四角形ABCDは以下の条件を満たすとする。\\
(\textrm{a})頂点Aの座標は(-1,-1)である。\\
(\textrm{b})四角形の各辺は原点を中心とする半径1の円と接する。\\
(\textrm{c})\angle BCDは直角である。\\
また、辺ABの長さをlとし、\angle ABC=\thetaとする。\\
\\
(1)\angle BAD=\frac{\pi}{\boxed{\ \ ア\ \ }}である。\\
\\
(2)辺CDの長さが\frac{5}{3}であるとき、l=\frac{\boxed{\ \ イ\ \ }}{\boxed{\ \ ウ\ \ }},\ \tan\theta=\frac{\boxed{\ \ エオ\ \ }}{\boxed{\ \ カ\ \ }}\ である。\\
\\
(3)\thetaは鋭角とする。四角形ABCDの面積が6であるとき、l=\boxed{\ \ キ\ \ }+\sqrt{\boxed{\ \ ク\ \ }}\ ,\ \\
\\
\theta = \frac{\pi}{\boxed{\ \ ケ\ \ }}である。\\
\end{eqnarray}

2022慶應義塾大学経済学部過去問
この動画を見る 

福田の入試問題解説〜慶應義塾大学2022年医学部第4問〜4次関数の増減凹凸と曲線の長さ

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#指数関数#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{4}}\ 座標平面上の点A(a,b)を1つ固定し、曲線y=x^2上の点P(x,x^2)と点A\\
との距離の2乗をg(x)とおく。関数y=g(x)のグラフが区間(-\infty,\infty)において下に凸\\
となるための条件はb \leqq \boxed{\ \ ア\ \ }\ となることである。b \gt \boxed{\ \ ア\ \ }\ のときy=g(x)のグラフは\\
2つの変曲点をもち、そのx座標は\ \boxed{\ \ イ\ \ }\ 及び\ \boxed{\ \ ウ\ \ }\ である。\\
ただし\boxed{\ \ イ\ \ }\lt \boxed{\ \ ウ\ \ }とする。また、関数y=g(x)が極小となるxがただ1つであるために\\
a,bが満たすべき条件をb \leqq F(a)と書くと、F(a)=\boxed{\ \ エ\ \ } である。\\
b= F(a)のとき、関数y=g(x)はx=\boxed{\ \ オ\ \ }において最小値をとる。\\
さらに、連立不等式x \geqq 0,\ y \geqq x^2が表す領域をDとするとき、\\
曲線y=F(x)のDに含まれる部分の長さLを求めると、L=\boxed{\ \ カ\ \ }である。
\end{eqnarray}

2022慶應義塾大学医学部過去問
この動画を見る 

福田の入試問題解説〜慶應義塾大学2022年医学部第3問〜内サイクロイドと極方程式

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#平面上の曲線#図形と方程式#円と方程式#学校別大学入試過去問解説(数学)#媒介変数表示と極座標#慶應義塾大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{3}}\ (1)座標平面上の点P(x,y)を、点T(s,t)を中心として半時計周りに角\alphaだけ\\
回転させるときに、点Pが点P'(x',y')に移るとする。x'とy'をx,y,s,t,\alpha\\
の式で表すとx'=\boxed{\ \ ア\ \ }, y'=\boxed{\ \ イ\ \ }となる。\\
(2)aを正の実数とする。原点O(0,0)とする半径aの円Cに、半径\frac{a}{2}で原点O\\
を通る円Kを点A(a,0)において内接させる。この円Kを円Cに沿って\\
滑らないように転がす。ただし、KとCの接点がC上を半時計回りに動くようにする。\\
そして、接点の座標がはじめて(a\cos\beta,a\sin\beta)(0 \leqq \beta \leqq 2\pi)となるようにする。\\
円Kに対するこの操作は次の2段階の操作を続けて行うことと同等である。\\
(\textrm{i})点B(\frac{a}{2},0)を中心として、円Kを\boxed{\ \ ウ\ \ }\ に角\boxed{\ \ エ\ \ }\ だけ回転させる。\\
(\textrm{ii})原点Oを中心として、円Kを\boxed{\ \ オ\ \ }\ に角\boxed{\ \ カ\ \ }\ だけ回転させる。\\
\\
\boxed{\ \ ウ\ \ },\boxed{\ \ エ\ \ },\boxed{\ \ オ\ \ },\boxed{\ \ カ\ \ }の選択肢\\
時計回り,反時計回り,\beta,2\beta,\frac{1}{2}\beta\\
\\
\\
(3)円Kが点Aにおいて円Cに内接しているとき、Kの内部に固定された点Q(b,0)\\
(ただし、0 \lt b \lt a)をとる。円Kを、Cとの接点がC上を一周するまで(2)に述べた\\
やり方でCに沿って転がすとき、点Qが動いてできる曲線をS_1とする。S_1上の\\
点の座標を(x,y)として、S_1の方程式をx,yを用いて書くと\boxed{\ \ キ\ \ }となる。\\
\\
(4)円Kが点Aにおいて円Cに内接しているとき、円Cに固定された点R(0,a)をとる。\\
今度は円Kを固定して、円Cの方をKに接した状態で滑らないようにKに沿って転がす。\\
2つの円の接点が円Kを\boxed{\ \ ク\ \ }回転したとき、点Rははじめてもとの位置\\
(0,a)に戻る。Rが描く曲線をS_2とする。原点Oを極とし、x軸の正の部分を\\
始線とする極座標(r,\theta)によるS_2の極方程式はr=\boxed{\ \ ケ\ \ }である。\\
ただしr,\thetaはそれぞれS_2上の点の原点からの距離、および偏角である。
\end{eqnarray}

2022慶應義塾大学医学部過去問
この動画を見る 

福田の入試問題解説〜慶應義塾大学2022年医学部第2問〜確率と極限

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#場合の数と確率#確率#微分法と積分法#平均変化率・極限・導関数#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{2}}\ (1)2n個の玉があり、そのうちk個は赤、他は白とする。ただしn>k>1である。\\
また袋A, Bが用意されているとする。\\
(1) 2n 個の玉からn個を無作為に選んで袋Aに入れ、残りを袋Bに入れる。袋A\\
にi個 (0 \leqq i \leqq k) の赤玉が入る確率を p(n, k, i) とおく。kとiを固定してn \to \infty\\
とするときの p(n, k, i) の極限値をkとiの式で表すと \lim_{n \to \infty} p(n, k, i) =\boxed{\ \ ア\ \ } \\
となる。またn>3のとき p(n, 3, 1) = \boxed{\ \ イ\ \ }である。\\
以下、n>k=3として、袋Aに赤玉が1個、袋Bに赤玉が2個入っている状態を\\
状態Sと呼ぶ。また袋A, Bのそれぞれから同時に玉を1個ずつ無作為に取り出し\\
て、玉が入っていた袋と逆の袋に入れる操作を操作Tと呼ぶ。\\
(2) 状態 Sから始めて操作を1回行った後で袋Aから玉を1個無作為に取り出す \\
とき、取り出した玉が赤玉である確率は\boxed{\ \ ウ\ \ }である。また、取り出した玉が赤玉\\
だったとき、操作 T終了後に袋Aに赤玉が2個入っていた条件つき確率は\boxed{\ \ エ\ \ }\\
である。\\
(3)状態Sから始めて操作Tを3回繰り返し行った後に、袋Aに赤玉が3個入っている\\
確率は\boxed{\ \ オ\ \ }である。\\
(4)状態Sから初めて袋A,Bのそれぞれから同時に玉を3個ずつ無作為に取り出して、\\
それらを玉が入っていた袋と逆の袋に入れた後に、袋Aに赤玉が3個入っている\\
確率は\boxed{\ \ カ\ \ }である。
\end{eqnarray}

2022慶應義塾大学医学部過去問
この動画を見る 

福田の入試問題解説〜慶應義塾大学2022年医学部第1問(4)〜合成関数と漸化式

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#関数と極限#関数(分数関数・無理関数・逆関数と合成関数)#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数B#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}}\ (4)数列\left\{a_n\right\},\left\{b_n\right\}(ただしa_1≠0かつa_1≠1)に対して1次関数\\
f_n(x)=a_nx+b_n (n=1,2,\ldots)\\
を定める。また、\alpha=a_1, \beta=b_1とおく。すべての自然数nに対して\\
(f_n◦f_1)(x)=f_{n+1}(x)\\
が成り立つとき、数列\left\{a_n\right\},\left\{b_n\right\}の一般項を\alphaと\betaの式で表すと\\
a_n=\boxed{\ \ ク\ \ }, b_n=\boxed{\ \ ケ\ \ }\\
となる。
\end{eqnarray}

2022慶應義塾大学医学部過去問
この動画を見る 

福田の入試問題解説〜慶應義塾大学2022年医学部第1問(3)〜集合と対数不等式

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#数と式#集合と命題(集合・命題と条件・背理法)#指数関数と対数関数#対数関数#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}}\ (3)関数f(x)=\log_{\frac{1}{3}}\sqrt{3x^3-2x^2}とg(x)=\log_9(3x^2-2)の定義域をそれぞれ\\
集合A,Bで表すと、A\cap B=\left\{x|xはx \gt \boxed{\ \ オ\ \ }\ を満たす実数\right\}である。\\
実数xが集合A\cap Bの要素であるとき、f(x)+g(x) \lt 0となるための条件は\\
\boxed{\ \ オ\ \ } \lt x \lt \boxed{\ \ カ\ \ }またはx \gt \boxed{\ \ キ\ \ }となることである。
\end{eqnarray}

2022慶應義塾大学医学部過去問
この動画を見る 

福田の入試問題解説〜慶應義塾大学2022年医学部第1問(2)〜高次式の因数分解

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#数と式#複素数と方程式#式の計算(整式・展開・因数分解)#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}}\ (2)整式x^5+x^4+x^3+x^2+x+1は、整数を係数とし、次数が1以上で、\\
かつ最高次の項の係数が1であるような3つの整式\boxed{\ \ イ\ \ },\boxed{\ \ ウ\ \ },\boxed{\ \ エ\ \ }の積に\\
因数分解せよ。
\end{eqnarray}

2022慶應義塾大学医学部過去問
この動画を見る 

福田の入試問題解説〜慶應義塾大学2022年医学部第1問(1)〜絶対値の付いた方程式の解

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#一次不等式(不等式・絶対値のある方程式・不等式)#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}}\ (1)方程式4||x|-1|=x+2の解を全て求めるとx=\boxed{\ \ あ\ \ } となる。
\end{eqnarray}

2022慶應義塾大学医学部過去問
この動画を見る 

福田の入試問題解説〜慶應義塾大学2022年理工学部第5問〜三角比と空間図形の計量

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#空間図形#図形と計量#三角比への応用(正弦・余弦・面積)#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{5}}\ 半径4\sqrt2の球面S上に3点A,B,Cがあり、線分AB,BC,CAの長さは\\
それぞれAB=4\sqrt6,BC=10,C=6とする。\\
(1)\cos\angle ABC=\boxed{\ \ テ\ \ }である。平面ABCで球面Sを切った切り口の円をTとする。\\
Tの半径は\boxed{\ \ ト\ \ }である。点Dが円T上を動くとき、\triangle DABの面積の最大値は\\
\boxed{\ \ ナ\ \ }である。\\
(2)球面Sの中心Oから平面ABCに下ろした垂線OHの長さは\boxed{\ \ ニ\ \ }である。\\
(3)点Eは球面S上を動くとき、三角錐EABCの体積の最大値は\boxed{\ \ ヌ\ \ }である。
\end{eqnarray}

2022慶應義塾大学理工学部過去問
この動画を見る 
PAGE TOP