福田の1.5倍速演習〜合格する重要問題061〜早稲田大学2019年度社会科学部第1問〜円の通過範囲と放物線と円の位置関係 - 質問解決D.B.(データベース)

福田の1.5倍速演習〜合格する重要問題061〜早稲田大学2019年度社会科学部第1問〜円の通過範囲と放物線と円の位置関係

問題文全文(内容文):
$\Large{\boxed{1}}$ $k$を実数とする。座標平面において方程式
$x^2+y^2+x+(2k+1)y+k^2+1=0$
の表す図形$C$を考える。次の問いに答えよ。
(1)$C$が円であるような$k$の値の範囲を求めよ。ただし、点も円とみなすものとする。
(2)$k$が変化するとき、$C$が通る点($x,y$)の存在領域を座標平面上に図示せよ。
(3)(2)で求めた領域の境界線と(1)で求めた円が共有点をもたないような、$k$の値の
範囲を求めよ。

2019早稲田大学社会科学部過去問
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#円と方程式#軌跡と領域#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#大学入試解答速報#数学
指導講師: 福田次郎
問題文全文(内容文):
$\Large{\boxed{1}}$ $k$を実数とする。座標平面において方程式
$x^2+y^2+x+(2k+1)y+k^2+1=0$
の表す図形$C$を考える。次の問いに答えよ。
(1)$C$が円であるような$k$の値の範囲を求めよ。ただし、点も円とみなすものとする。
(2)$k$が変化するとき、$C$が通る点($x,y$)の存在領域を座標平面上に図示せよ。
(3)(2)で求めた領域の境界線と(1)で求めた円が共有点をもたないような、$k$の値の
範囲を求めよ。

2019早稲田大学社会科学部過去問
投稿日:2023.01.15

<関連動画>

福田のわかった数学〜高校2年生019〜円の極線の公式の証明

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#円と方程式#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{II}$ 円の方程式
円$x^2+y^2=r^2$ に円外の点$(a,b)$から
2本の接線を引く。
このとき2接点$P,Q$を結ぶ直線は
$ax+by=r^2$
となることを証明せよ。
この動画を見る 

数学「大学入試良問集」【11−2 交点を通過する円】を宇宙一わかりやすく

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#円と方程式#学校別大学入試過去問解説(数学)#数学(高校生)#都立科学技術大学
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
直線$l:(1-k)x+(1+k)y+2k-14=0$は定数$k$の値によらず定点$A$を通る。
このとき、次の各問いに答えよ。
(1)
定点$A$の座標を求めよ。

(2)
$xy$平面上に点$B$をとる。
原点$O$と2点$A,B$を頂点とする三角形$OAB$が正三角形になるとき、正三角形$OAB$の外接円の中心の座標を求めよ。

(3)
直線$l$と円$C:x^2+y^2=16$の2つの交点を通る円のうちで、2点$`(-4,0),Q(2,0)$を通る円の方程式を求めよ。
この動画を見る 

福田の数学〜慶應義塾大学2021年総合政策学部第3問〜円と円の位置関係

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#円と方程式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{3}} 図のように(※動画参照)円Aの中に、5つの円Bと4つの円Cが含まれている。\\
中心の円Bは他の4つの円Bに接し、他の4つの円Bのそれぞれは中心の円Bと円A\\
と2つの円Cに接している。4つの円Cのそれぞれは円Aと2つの円Bに接している。\\
いま、円Bの半径を1とすると、円Cの半径は\\
\frac{\boxed{\ \ アイ\ \ }+\boxed{\ \ ウエ\ \ }\sqrt{\boxed{\ \ オカ\ \ }}}{\boxed{\ \ キク\ \ }}\\
である。
\end{eqnarray}

2021慶應義塾大学総合政策学部過去問
この動画を見る 

福田の一夜漬け数学〜図形と方程式〜円の方程式(10)2円の位置関係、高校2年生

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#円と方程式#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ 2つの円$x^2+y^2=10$ $\cdots$①, $x^2+y^2-2ax-6ay+40a-50=0$ $\cdots$②
が接するように、定数aの値を求めよ。
この動画を見る 

【マイナス】の捉え方は【世界】を変える

アイキャッチ画像
単元: #数Ⅱ#物理#図形と方程式#点と直線#円と方程式#力学#数学(高校生)#理科(高校生)
指導講師: カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
相対速度 円の方程式、直線の方程式まとめ動画です
この動画を見る 
PAGE TOP