共通テスト
【数学IA】コレだけやれば50点はとれます【最短で50点突破】(共通テスト)
単元:
#数Ⅰ#数A#大学入試過去問(数学)#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師:
カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
【数学IA】点数獲得のための勉強法紹介動画です
この動画を見る
【数学IA】点数獲得のための勉強法紹介動画です
【数学苦手な人向け】今すぐ始めろ!共通テストの数学対策のススメ!(後編)
単元:
#大学入試過去問(数学)#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
2022年度大学入試共通テストの平均点が発表された。
数学ⅠAは37.96点と前年差マイナス19.72点。
数学ⅡBは43.06点と前年差マイナス16.87点。
この難化する共通テストにどう立ち向かっていけばいいのか、プロ講師が薦める対策・勉強法とは!
この動画を見る
2022年度大学入試共通テストの平均点が発表された。
数学ⅠAは37.96点と前年差マイナス19.72点。
数学ⅡBは43.06点と前年差マイナス16.87点。
この難化する共通テストにどう立ち向かっていけばいいのか、プロ講師が薦める対策・勉強法とは!
【数学苦手な人向け】今すぐ始めろ!共通テストの数学対策のススメ!(前編)
単元:
#大学入試過去問(数学)#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
2022年度大学入試共通テストの平均点が発表された。
数学ⅠAは37.96点と前年差マイナス19.72点。
数学ⅡBは43.06点と前年差マイナス16.87点。
この難化する共通テストにどう立ち向かっていけばいいのか、プロ講師が薦める対策・勉強法とは!
この動画を見る
2022年度大学入試共通テストの平均点が発表された。
数学ⅠAは37.96点と前年差マイナス19.72点。
数学ⅡBは43.06点と前年差マイナス16.87点。
この難化する共通テストにどう立ち向かっていけばいいのか、プロ講師が薦める対策・勉強法とは!
共通テストの誘導はこういうことだったのね
単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
7で割って3余り,9で割って2余り,11で割って1余る最小の自然数を求めよ.
この動画を見る
7で割って3余り,9で割って2余り,11で割って1余る最小の自然数を求めよ.
共通テスト追試ムズイぞ整数問題
単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
共通テスト追試の整数問題を解説していきます.
この動画を見る
共通テスト追試の整数問題を解説していきます.
【高校数学】時間内で誰ができるねん~共通テスト数学ⅠA第4問解説~【大学受験】
福田の共通テスト直前演習〜2021年共通テスト数学ⅡB問題5。ベクトルの問題。
単元:
#大学入試過去問(数学)#平面上のベクトル#ベクトルと平面図形、ベクトル方程式#センター試験・共通テスト関連#共通テスト#数学(高校生)#数C
指導講師:
福田次郎
問題文全文(内容文):
平面上の点Oを中心とする半径1の円周上に、3点A,B,Cがあり、
$\overrightarrow{ OA }・\overrightarrow{ OB }=-\frac{2}{3}および\overrightarrow{ OC }=-\overrightarrow{ OA }$を満たすとする。tを$0 \lt t \lt 1$を満たす
実数とし、線分ABを$t:(1-t)$に内分する点をPとする。
また、直線OP上に点Qをとる。
(1)$\cos\angle AOB=\frac{\boxed{\ \ アイ\ \ }}{\boxed{\ \ ウ\ \ }}$ である。
また、実数$k$を用いて、$\overrightarrow{ OQ }=k\overrightarrow{ OP }$と表せる。したがって
$\overrightarrow{ OQ }=\boxed{\ \ エ\ \ }\ \overrightarrow{ OA }+\boxed{\ \ オ\ \ }\ \overrightarrow{ OB } \ldots\ldots\ldots\ldots①$
$\overrightarrow{ CQ }=\boxed{\ \ カ\ \ }\ \overrightarrow{ OA }+\boxed{\ \ キ\ \ }\ \overrightarrow{ OB }$
となる。
$\overrightarrow{ OA }$と$\overrightarrow{ OP }$が垂直となるのは、$t=\frac{\boxed{\ \ ク\ \ }}{\boxed{\ \ ケ\ \ }}$ のときである。
$\boxed{\ \ エ\ \ } ~ \boxed{\ \ キ\ \ }$の解答群(同じものを繰り返し選んでもよい。)
⓪$kt$ ①$(k-kt)$ ②$(kt+1)$
③$(kt-1)$ ④$(k-kt+1)$ ⑤$(k-kt-1)$
以下、$t \neq \frac{\boxed{\ \ ク\ \ }}{\boxed{\ \ ケ\ \ }}$とし、$\angle OCQ$が直角であるとする。
(2)$\angle OCQ$が直角であることにより、(1)のkは
$k=\frac{\boxed{\ \ コ\ \ }}{\boxed{\ \ サ\ \ }\ t-\boxed{\ \ シ\ \ }} \ldots②$
となることがわかる。
平面から直線OAを除いた部分は、直線OAを境に二つの部分に分けられる。
そのうち、点Bを含む部分を$D_1$、含まない部分を$D_2$とする。また、平面
から直線OBを除いた部分は、直線OBを境に二つの部分に分けられる。
そのうち、点Aを含む部分を$E_1$、含まない部分を$E_2$とする。
・$0 \lt t \lt \frac{\boxed{\ \ ク\ \ }}{\boxed{\ \ ケ\ \ }}$ならば、点Qは$\boxed{\ \ ス\ \ }$。
・$\frac{\boxed{\ \ ク\ \ }}{\boxed{\ \ ケ\ \ }} \lt t \lt 1$ならば、点Qは$\boxed{\ \ セ\ \ }$。
$\boxed{\ \ ス\ \ }、\boxed{\ \ セ\ \ }$の解答群(同じものを繰り返し選んでもよい。)
⓪$D_1$に含まれ、かつ$E_1$に含まれる
①$D_1$に含まれ、かつ$E_2$に含まれる
②$D_2$に含まれ、かつ$E_1$に含まれる
③$D_2$に含まれ、かつ$E_2$に含まれる
(3)太郎さんと花子さんは、点Pの位置と$|\overrightarrow{ OQ }|$の関係について考えている。
$t=\frac{1}{2}$のとき、①と②により、$|\overrightarrow{ OQ }|=\sqrt{\boxed{\ \ ソ\ \ }}$とわかる。
太郎:$t\neq \frac{1}{2}$のときにも、$|\overrightarrow{ OQ }|=\sqrt{\boxed{\ \ ソ\ \ }}$となる場合があるかな。
花子:$|\overrightarrow{ OQ }|$を$t$を用いて表して、$|\overrightarrow{ OQ }|=\sqrt{\boxed{\ \ ソ\ \ }}$
を満たすtの値について考えればいいと思うよ。
太郎:計算が大変そうだね。
花子:直線OAに関して、$t=\frac{1}{2}$のときの点Qと対称な点をRとしたら
$|\overrightarrow{ OR }|=\sqrt{\boxed{\ \ ソ\ \ }}$となるよ。
太郎:$\overrightarrow{ OR }$を$\overrightarrow{ OA }$と$\overrightarrow{ OB }$を用いて表すことができれば、
tの値が求められそうだね。
直線OAに関して、$t=\frac{1}{2}$のときの点Qと対称な点をRとすると
$\overrightarrow{ CR }=\boxed{\ \ タ\ \ }\ \overrightarrow{ CQ }$
$=\boxed{\ \ チ\ \ }\ \overrightarrow{ OA }+\boxed{\ \ ツ\ \ }\ \overrightarrow{ OB }$
となる。
$t\neq \frac{1}{2}$のとき、$|\overrightarrow{ OQ }|=\sqrt{\boxed{\ \ ソ\ \ }}$となるtの値は$\frac{\boxed{\ \ テ\ \ }}{\boxed{\ \ ト\ \ }}$である。
2021共通テスト数学過去問
この動画を見る
平面上の点Oを中心とする半径1の円周上に、3点A,B,Cがあり、
$\overrightarrow{ OA }・\overrightarrow{ OB }=-\frac{2}{3}および\overrightarrow{ OC }=-\overrightarrow{ OA }$を満たすとする。tを$0 \lt t \lt 1$を満たす
実数とし、線分ABを$t:(1-t)$に内分する点をPとする。
また、直線OP上に点Qをとる。
(1)$\cos\angle AOB=\frac{\boxed{\ \ アイ\ \ }}{\boxed{\ \ ウ\ \ }}$ である。
また、実数$k$を用いて、$\overrightarrow{ OQ }=k\overrightarrow{ OP }$と表せる。したがって
$\overrightarrow{ OQ }=\boxed{\ \ エ\ \ }\ \overrightarrow{ OA }+\boxed{\ \ オ\ \ }\ \overrightarrow{ OB } \ldots\ldots\ldots\ldots①$
$\overrightarrow{ CQ }=\boxed{\ \ カ\ \ }\ \overrightarrow{ OA }+\boxed{\ \ キ\ \ }\ \overrightarrow{ OB }$
となる。
$\overrightarrow{ OA }$と$\overrightarrow{ OP }$が垂直となるのは、$t=\frac{\boxed{\ \ ク\ \ }}{\boxed{\ \ ケ\ \ }}$ のときである。
$\boxed{\ \ エ\ \ } ~ \boxed{\ \ キ\ \ }$の解答群(同じものを繰り返し選んでもよい。)
⓪$kt$ ①$(k-kt)$ ②$(kt+1)$
③$(kt-1)$ ④$(k-kt+1)$ ⑤$(k-kt-1)$
以下、$t \neq \frac{\boxed{\ \ ク\ \ }}{\boxed{\ \ ケ\ \ }}$とし、$\angle OCQ$が直角であるとする。
(2)$\angle OCQ$が直角であることにより、(1)のkは
$k=\frac{\boxed{\ \ コ\ \ }}{\boxed{\ \ サ\ \ }\ t-\boxed{\ \ シ\ \ }} \ldots②$
となることがわかる。
平面から直線OAを除いた部分は、直線OAを境に二つの部分に分けられる。
そのうち、点Bを含む部分を$D_1$、含まない部分を$D_2$とする。また、平面
から直線OBを除いた部分は、直線OBを境に二つの部分に分けられる。
そのうち、点Aを含む部分を$E_1$、含まない部分を$E_2$とする。
・$0 \lt t \lt \frac{\boxed{\ \ ク\ \ }}{\boxed{\ \ ケ\ \ }}$ならば、点Qは$\boxed{\ \ ス\ \ }$。
・$\frac{\boxed{\ \ ク\ \ }}{\boxed{\ \ ケ\ \ }} \lt t \lt 1$ならば、点Qは$\boxed{\ \ セ\ \ }$。
$\boxed{\ \ ス\ \ }、\boxed{\ \ セ\ \ }$の解答群(同じものを繰り返し選んでもよい。)
⓪$D_1$に含まれ、かつ$E_1$に含まれる
①$D_1$に含まれ、かつ$E_2$に含まれる
②$D_2$に含まれ、かつ$E_1$に含まれる
③$D_2$に含まれ、かつ$E_2$に含まれる
(3)太郎さんと花子さんは、点Pの位置と$|\overrightarrow{ OQ }|$の関係について考えている。
$t=\frac{1}{2}$のとき、①と②により、$|\overrightarrow{ OQ }|=\sqrt{\boxed{\ \ ソ\ \ }}$とわかる。
太郎:$t\neq \frac{1}{2}$のときにも、$|\overrightarrow{ OQ }|=\sqrt{\boxed{\ \ ソ\ \ }}$となる場合があるかな。
花子:$|\overrightarrow{ OQ }|$を$t$を用いて表して、$|\overrightarrow{ OQ }|=\sqrt{\boxed{\ \ ソ\ \ }}$
を満たすtの値について考えればいいと思うよ。
太郎:計算が大変そうだね。
花子:直線OAに関して、$t=\frac{1}{2}$のときの点Qと対称な点をRとしたら
$|\overrightarrow{ OR }|=\sqrt{\boxed{\ \ ソ\ \ }}$となるよ。
太郎:$\overrightarrow{ OR }$を$\overrightarrow{ OA }$と$\overrightarrow{ OB }$を用いて表すことができれば、
tの値が求められそうだね。
直線OAに関して、$t=\frac{1}{2}$のときの点Qと対称な点をRとすると
$\overrightarrow{ CR }=\boxed{\ \ タ\ \ }\ \overrightarrow{ CQ }$
$=\boxed{\ \ チ\ \ }\ \overrightarrow{ OA }+\boxed{\ \ ツ\ \ }\ \overrightarrow{ OB }$
となる。
$t\neq \frac{1}{2}$のとき、$|\overrightarrow{ OQ }|=\sqrt{\boxed{\ \ ソ\ \ }}$となるtの値は$\frac{\boxed{\ \ テ\ \ }}{\boxed{\ \ ト\ \ }}$である。
2021共通テスト数学過去問
福田の共通テスト直前演習〜2021年共通テスト数学ⅡB問題3。確率分布、統計の問題。
単元:
#大学入試過去問(数学)#確率分布と統計的な推測#確率分布#統計的な推測#センター試験・共通テスト関連#共通テスト#数学(高校生)#数B
指導講師:
福田次郎
問題文全文(内容文):
(1)A地区で保護されるジャガイモには1個の重さが200gを超えるものが
25%含まれることが経験的にわかっている。花子さんはA地区で収穫された
ジャガイモから400個を無作為に抽出し、重さを計測した。そのうち、重さが
200gを超えるジャガイモの個数を表す確率変数をZとする。このときZは
二項分布B($400,0,\boxed{\ \ アイ\ \ }$)に従うから、Zの平均(期待値)は$\boxed{\ \ ウエオ\ \ }$である。
(2)Zを(1)の確率変数とし、A地区で収穫されたジャガイモ400個からなる標本において
重さが200gを超えていたジャガイモの標本における比率を
$R=\frac{Z}{400}$とする。このとき、Rの標準偏差は$\sigma(R)=\boxed{\ \ カ\ \ }$である。
標本の大きさ400は十分に大きいので、Rは近似的に正規分布
$N(0,\boxed{\ \ アイ\ \ },(\boxed{\ \ カ\ \ })^2)$に従う。
したがって、$P(R \geqq x)=0.0465$となるようなxの値は$\boxed{\ \ キ\ \ }$となる。
ただし、$\boxed{\ \ キ\ \ }$の計算においては$\sqrt3=1.73$とする。
$\boxed{\ \ カ\ \ }$の解答群
⓪$\frac{3}{6400}$ ①$\frac{\sqrt3}{4}$ ②$\frac{\sqrt3}{80}$ ③$\frac{3}{40}$
$\boxed{\ \ キ\ \ }$については、最も適当なものを、次の⓪~③のうちから一つ選べ。
⓪0.209 ①0.251 ②0.286 ③0.395
(3)B地区で収穫され、出荷される予定のジャガイモ1個の重さは100gから
300gの間に分布している。B地区で収穫され、出荷される予定のジャガイモ
1個の重さを表す確率変数をXとするとき、Xは連続型確率変数であり、X
の取り得る値xの範囲は$100 \leqq x \leqq 300$である。
花子さんは、B地区で収穫され、出荷される予定の全てのジャガイモのうち、
重さが200g以上のものの割合を見積もりたいと考えた。そのために花子さんは
Xの確率密度関数f(x)として適当な関数を定め、それを用いて割合を
見積もるという方針を立てた。
B地区で収穫され、出荷される予定のジャガイモから206個を無作為に抽出
したところ、重さの標本平均は180gであった。
図1(※動画参照)はこの標本のヒストグラムである。
花子さんは図1のヒストグラムにおいて、重さxの増加とともに度数がほぼ
一定の割合で減少している傾向に着目し、Xの確率密度関数f(x)として、1次関数
$f(x)=ax+b (100 \leqq x \leqq 300)$
を考えることにした。ただし、$100 \leqq x \leqq 300$の範囲で$f(x) \geqq 0$とする。
このとき、$P(100 \leqq X \leqq 300)=\boxed{\ \ ク\ \ }$であることから
$\boxed{\ \ ケ\ \ }・10^4a+\boxed{\ \ コ\ \ }・10^2b=\boxed{\ \ ク\ \ } \ldots①$
である。
花子さんは、Xの平均(期待値)が重さの標本平均180gと等しくなるように
確率密度関数を定める方法を用いることにした。
連続型確率変数Xの取り得る値xの範囲が$100 \leqq x \leqq 300$で、その
確率密度関数がf(x)のとき、Xの平均(期待値)mは
$m=\int_{100}^{300}xf(x)dx$
で定義される。この定義と花子さんの採用した方法から
$m=\frac{26}{3}・10^5a+4・10^4b=180 \ldots②$
となる。①と②により、確率密度関数は
$f(x)=-\ \boxed{\ \ サ\ \ }・10^{-5}x+\boxed{\ \ シス\ \ }・10^{-3} \ldots③$
と得られる。このようにして得られた③のf(x)は、$100 \leqq x \leqq 300$の範囲で
$f(x) \geqq 0$を満たしており、確かに確率密度関数として適当である。
したがって、この花子さんお方針に基づくと、B地区で収穫され、出荷される
予定の全てのジャガイモのうち、重さが200g以上のものは$\boxed{\ \ セ\ \ }%$
あると見積もることができる。
$\boxed{\ \ セ\ \ }$については、最も適当なものを、次の⓪~③のうちから一つ選べ。
⓪33 ①34 ②35 ③36
2022共通テスト数学過去問
この動画を見る
(1)A地区で保護されるジャガイモには1個の重さが200gを超えるものが
25%含まれることが経験的にわかっている。花子さんはA地区で収穫された
ジャガイモから400個を無作為に抽出し、重さを計測した。そのうち、重さが
200gを超えるジャガイモの個数を表す確率変数をZとする。このときZは
二項分布B($400,0,\boxed{\ \ アイ\ \ }$)に従うから、Zの平均(期待値)は$\boxed{\ \ ウエオ\ \ }$である。
(2)Zを(1)の確率変数とし、A地区で収穫されたジャガイモ400個からなる標本において
重さが200gを超えていたジャガイモの標本における比率を
$R=\frac{Z}{400}$とする。このとき、Rの標準偏差は$\sigma(R)=\boxed{\ \ カ\ \ }$である。
標本の大きさ400は十分に大きいので、Rは近似的に正規分布
$N(0,\boxed{\ \ アイ\ \ },(\boxed{\ \ カ\ \ })^2)$に従う。
したがって、$P(R \geqq x)=0.0465$となるようなxの値は$\boxed{\ \ キ\ \ }$となる。
ただし、$\boxed{\ \ キ\ \ }$の計算においては$\sqrt3=1.73$とする。
$\boxed{\ \ カ\ \ }$の解答群
⓪$\frac{3}{6400}$ ①$\frac{\sqrt3}{4}$ ②$\frac{\sqrt3}{80}$ ③$\frac{3}{40}$
$\boxed{\ \ キ\ \ }$については、最も適当なものを、次の⓪~③のうちから一つ選べ。
⓪0.209 ①0.251 ②0.286 ③0.395
(3)B地区で収穫され、出荷される予定のジャガイモ1個の重さは100gから
300gの間に分布している。B地区で収穫され、出荷される予定のジャガイモ
1個の重さを表す確率変数をXとするとき、Xは連続型確率変数であり、X
の取り得る値xの範囲は$100 \leqq x \leqq 300$である。
花子さんは、B地区で収穫され、出荷される予定の全てのジャガイモのうち、
重さが200g以上のものの割合を見積もりたいと考えた。そのために花子さんは
Xの確率密度関数f(x)として適当な関数を定め、それを用いて割合を
見積もるという方針を立てた。
B地区で収穫され、出荷される予定のジャガイモから206個を無作為に抽出
したところ、重さの標本平均は180gであった。
図1(※動画参照)はこの標本のヒストグラムである。
花子さんは図1のヒストグラムにおいて、重さxの増加とともに度数がほぼ
一定の割合で減少している傾向に着目し、Xの確率密度関数f(x)として、1次関数
$f(x)=ax+b (100 \leqq x \leqq 300)$
を考えることにした。ただし、$100 \leqq x \leqq 300$の範囲で$f(x) \geqq 0$とする。
このとき、$P(100 \leqq X \leqq 300)=\boxed{\ \ ク\ \ }$であることから
$\boxed{\ \ ケ\ \ }・10^4a+\boxed{\ \ コ\ \ }・10^2b=\boxed{\ \ ク\ \ } \ldots①$
である。
花子さんは、Xの平均(期待値)が重さの標本平均180gと等しくなるように
確率密度関数を定める方法を用いることにした。
連続型確率変数Xの取り得る値xの範囲が$100 \leqq x \leqq 300$で、その
確率密度関数がf(x)のとき、Xの平均(期待値)mは
$m=\int_{100}^{300}xf(x)dx$
で定義される。この定義と花子さんの採用した方法から
$m=\frac{26}{3}・10^5a+4・10^4b=180 \ldots②$
となる。①と②により、確率密度関数は
$f(x)=-\ \boxed{\ \ サ\ \ }・10^{-5}x+\boxed{\ \ シス\ \ }・10^{-3} \ldots③$
と得られる。このようにして得られた③のf(x)は、$100 \leqq x \leqq 300$の範囲で
$f(x) \geqq 0$を満たしており、確かに確率密度関数として適当である。
したがって、この花子さんお方針に基づくと、B地区で収穫され、出荷される
予定の全てのジャガイモのうち、重さが200g以上のものは$\boxed{\ \ セ\ \ }%$
あると見積もることができる。
$\boxed{\ \ セ\ \ }$については、最も適当なものを、次の⓪~③のうちから一つ選べ。
⓪33 ①34 ②35 ③36
2022共通テスト数学過去問
福田の共通テスト直前演習〜2021年共通テスト数学ⅡB問題4。数列の問題。
単元:
#大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#漸化式#センター試験・共通テスト関連#共通テスト#数学(高校生)#数B
指導講師:
福田次郎
問題文全文(内容文):
以下のように、歩行者と自転車が自宅を出発して移動と停止を繰り返してい
る。歩行者と自転車の動きについて、数学的に考えてみよう。
自宅を原点とする数直線を考え、歩行者と自転車をその数直線上を動く点とみ
なす。数直線上の点の座標がyであるとき、その点は位置にあるということに
する。また、歩行者が自宅を出発してからx分経過した時点を時刻xと表す。歩
行者は時刻0に自宅を出発し、正の向きに毎分1の速さで歩き始める。自転車は
時刻2に自宅を出発し、毎分2の速さで歩行者を追いかける。自転車が歩行者に
追いつくと、歩行者と自転車はともに1分だけ停止する。その後、歩行者は再び
正の向きに毎分1の速さで歩き出し、自転車は毎分2の速さで自宅に戻る。自転
車は自宅に到着すると、1分だけ停止した後、再び毎分2の速さで歩行者を追い
かける。これを繰り返し、自転車は自宅と歩行者の間を往復する。
$x=a_n$を自転車がn回目に自宅を出発する時刻とし、$y=b_n$をそのときの歩
行者の位置とする。
(1) 花子さんと太郎さんは、数列$\left\{a_n\right\}, \left\{b_n\right\}$の一般項を求めるために、歩行者
と自転車について、時刻において位置yにいることをOを原点とする座標
平面上の点(x,y)で表すことにした。
$a_1=2,b_1=2$により、自転車が最初に自宅を出発するときの時刻と自転
車の位置を表す点の座標は(2,0)であり、その時の時刻と歩行者の位置を
表す点の座標は(2,2)である。また、自転車が最初に歩行者に追いつくとき
の時刻と位置を表す点の座標は$(\boxed{\ \ ア\ \ },\boxed{\ \ ア\ \ })$である。よって
$a_2=\boxed{\ \ イ\ \ }, b_2=\boxed{\ \ ウ\ \ }$
である。
花子:数列$\left\{a_n\right\}, \left\{b_n\right\}$の一般項について考える前に、
$(\boxed{\ \ ア\ \ },\boxed{\ \ ア\ \ })$の求め方について整理してみようか。
太郎:花子さんはどうやって求めたの?
花子:自転車が歩行者を追いかけるときに、間隔が1分間に1ずつ縮まっていくこと
を利用したよ。
太郎:歩行者と自転車の動きをそれぞれ直線の方程式で表して、交点を
計算して求めることもできるね。
自転車がn回目に自宅を出発するときの時刻と自転車の位置を表す点の座標
は$(a_n,0)$であり、そのときの時刻と歩行者の位置を表す点の座標は
$(a_n,b_n)$である。よって、n回目に自宅を出発した自転車が次に歩行者に
追いつくときの時刻と位置を表す点の座標は、$a_n,b_n$を用いて、
$(\boxed{\ \ エ\ \ },\boxed{\ \ オ\ \ })$と表せる。
$\boxed{\ \ エ\ \ },\boxed{\ \ オ\ \ }$の解答群(同じものを繰り返し選んでもよい。)
⓪$a_n$ ①$b_n$ ②$2a_n$
③$a_n+b_n$ ④$2b_n$ ⑤$3a_n$
⑥$2a_n+b_n$ ⑦$a_n+2b_n$ ⑧$3b_n$
以上から、数列$\left\{a_n\right\}, \left\{b_n\right\}$について、自然数nに対して、関係式
$a_{n+1}=a_n+\boxed{\ \ カ\ \ }\ b_n+\boxed{\ \ キ\ \ } \ldots①$
$b_{n+1}=3b_n+\boxed{\ \ ク\ \ } \ldots②$
が成り立つことが分かる。まず、$b_1=2$と②から
$b_n=\boxed{\ \ ケ\ \ } (n=1,2,3,\ldots)$
を得る。この結果と、$a_1=2$および1から
$a_n=\boxed{\ \ コ\ \ } (n=1,2,3,\ldots)$
がわかる。
$\boxed{\ \ ケ\ \ }, \boxed{\ \ コ\ \ }$の解答群(同じものを繰り返し選んでもよい。)
⓪$3^{n-1}+1$ ①$\frac{1}{2}・3^n+\frac{1}{2}$
②$3^{n-1}+n$ ③$\frac{1}{2}・3^n+n-\frac{1}{2}$
④$3^{n-1}+n^2$ ⑤$\frac{1}{2}・3^n+n^2-\frac{1}{2}$
⑥$2・3^{n-1}$ ⑦$\frac{5}{2}・3^{n-1}-\frac{1}{2}$
⑧$2・3^{n-1}+n-1$ ⑨$\frac{5}{2}・3^{n-1}+n-\frac{3}{2}$
ⓐ$2・3^{n-1}+n^2-1$ ⓑ$\frac{5}{2}・3^{n-1}+n^2-\frac{3}{2}$
(2)歩行者が$y=300$の位置に到着するときまでに、自転車が装甲車に追いつく
回数は$\boxed{\ \ サ\ \ }$回である。また、$\boxed{\ \ サ\ \ }$回目に自転車が歩行者に追いつく
時刻は、$x=\boxed{\ \ シスセ\ \ }$である。
2022共通テスト数学過去問
この動画を見る
以下のように、歩行者と自転車が自宅を出発して移動と停止を繰り返してい
る。歩行者と自転車の動きについて、数学的に考えてみよう。
自宅を原点とする数直線を考え、歩行者と自転車をその数直線上を動く点とみ
なす。数直線上の点の座標がyであるとき、その点は位置にあるということに
する。また、歩行者が自宅を出発してからx分経過した時点を時刻xと表す。歩
行者は時刻0に自宅を出発し、正の向きに毎分1の速さで歩き始める。自転車は
時刻2に自宅を出発し、毎分2の速さで歩行者を追いかける。自転車が歩行者に
追いつくと、歩行者と自転車はともに1分だけ停止する。その後、歩行者は再び
正の向きに毎分1の速さで歩き出し、自転車は毎分2の速さで自宅に戻る。自転
車は自宅に到着すると、1分だけ停止した後、再び毎分2の速さで歩行者を追い
かける。これを繰り返し、自転車は自宅と歩行者の間を往復する。
$x=a_n$を自転車がn回目に自宅を出発する時刻とし、$y=b_n$をそのときの歩
行者の位置とする。
(1) 花子さんと太郎さんは、数列$\left\{a_n\right\}, \left\{b_n\right\}$の一般項を求めるために、歩行者
と自転車について、時刻において位置yにいることをOを原点とする座標
平面上の点(x,y)で表すことにした。
$a_1=2,b_1=2$により、自転車が最初に自宅を出発するときの時刻と自転
車の位置を表す点の座標は(2,0)であり、その時の時刻と歩行者の位置を
表す点の座標は(2,2)である。また、自転車が最初に歩行者に追いつくとき
の時刻と位置を表す点の座標は$(\boxed{\ \ ア\ \ },\boxed{\ \ ア\ \ })$である。よって
$a_2=\boxed{\ \ イ\ \ }, b_2=\boxed{\ \ ウ\ \ }$
である。
花子:数列$\left\{a_n\right\}, \left\{b_n\right\}$の一般項について考える前に、
$(\boxed{\ \ ア\ \ },\boxed{\ \ ア\ \ })$の求め方について整理してみようか。
太郎:花子さんはどうやって求めたの?
花子:自転車が歩行者を追いかけるときに、間隔が1分間に1ずつ縮まっていくこと
を利用したよ。
太郎:歩行者と自転車の動きをそれぞれ直線の方程式で表して、交点を
計算して求めることもできるね。
自転車がn回目に自宅を出発するときの時刻と自転車の位置を表す点の座標
は$(a_n,0)$であり、そのときの時刻と歩行者の位置を表す点の座標は
$(a_n,b_n)$である。よって、n回目に自宅を出発した自転車が次に歩行者に
追いつくときの時刻と位置を表す点の座標は、$a_n,b_n$を用いて、
$(\boxed{\ \ エ\ \ },\boxed{\ \ オ\ \ })$と表せる。
$\boxed{\ \ エ\ \ },\boxed{\ \ オ\ \ }$の解答群(同じものを繰り返し選んでもよい。)
⓪$a_n$ ①$b_n$ ②$2a_n$
③$a_n+b_n$ ④$2b_n$ ⑤$3a_n$
⑥$2a_n+b_n$ ⑦$a_n+2b_n$ ⑧$3b_n$
以上から、数列$\left\{a_n\right\}, \left\{b_n\right\}$について、自然数nに対して、関係式
$a_{n+1}=a_n+\boxed{\ \ カ\ \ }\ b_n+\boxed{\ \ キ\ \ } \ldots①$
$b_{n+1}=3b_n+\boxed{\ \ ク\ \ } \ldots②$
が成り立つことが分かる。まず、$b_1=2$と②から
$b_n=\boxed{\ \ ケ\ \ } (n=1,2,3,\ldots)$
を得る。この結果と、$a_1=2$および1から
$a_n=\boxed{\ \ コ\ \ } (n=1,2,3,\ldots)$
がわかる。
$\boxed{\ \ ケ\ \ }, \boxed{\ \ コ\ \ }$の解答群(同じものを繰り返し選んでもよい。)
⓪$3^{n-1}+1$ ①$\frac{1}{2}・3^n+\frac{1}{2}$
②$3^{n-1}+n$ ③$\frac{1}{2}・3^n+n-\frac{1}{2}$
④$3^{n-1}+n^2$ ⑤$\frac{1}{2}・3^n+n^2-\frac{1}{2}$
⑥$2・3^{n-1}$ ⑦$\frac{5}{2}・3^{n-1}-\frac{1}{2}$
⑧$2・3^{n-1}+n-1$ ⑨$\frac{5}{2}・3^{n-1}+n-\frac{3}{2}$
ⓐ$2・3^{n-1}+n^2-1$ ⓑ$\frac{5}{2}・3^{n-1}+n^2-\frac{3}{2}$
(2)歩行者が$y=300$の位置に到着するときまでに、自転車が装甲車に追いつく
回数は$\boxed{\ \ サ\ \ }$回である。また、$\boxed{\ \ サ\ \ }$回目に自転車が歩行者に追いつく
時刻は、$x=\boxed{\ \ シスセ\ \ }$である。
2022共通テスト数学過去問
福田の共通テスト直前演習〜2021年共通テスト数学ⅡB問題2。微分積分の問題。
単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#センター試験・共通テスト関連#共通テスト#面積、体積#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
[1]aを実数とし、$f(x)=x^3-6ax+16$
(1)$y=f(x)$のグラフの概形は
$a=0$のとき、$\boxed{\ \ ア\ \ }$
$a \gt 0$のとき、$\boxed{\ \ イ\ \ }$
である.
$\boxed{\ \ ア\ \ },\boxed{\ \ イ\ \ }$については、最も適当なものを、次の⓪~⑤のうちから
1つずつ選べ。ただし、同じものを繰り返し選んでもよい。
(※選択肢は動画参照)
(2)$a \gt 0$とし、pを実数とする。座標平面上の曲線$y=f(x)$と直線$y=p$
が3個の共有点をもつようなpの値の範囲は$\boxed{\ \ ウ\ \ } \lt p \lt \boxed{\ \ エ\ \ }$
である。
$p=\boxed{\ \ ウ\ \ }$のとき、曲線$y=f(x)$と直線$y=p$は2個の共有点をもつ。
それらのx座標を$q,r(q \lt r)$とする。曲線$y=f(x)$と直線$y=p$
が点(r,p)で接することに注意すると
$q=\boxed{\ \ オカ\ \ }\sqrt{\boxed{\ \ キ\ \ }}\ a^{\frac{1}{2}}, r=\sqrt{\boxed{\ \ ク\ \ }}\ a^{\frac{1}{2}}$
と表せる。
$\boxed{\ \ ウ\ \ }, \boxed{\ \ エ\ \ }$の解答群(同じものを繰り返し選んでもよい。)
⓪$2\sqrt2a^{\frac{3}{2}}+16$ ①$-2\sqrt2a^{\frac{3}{2}}+16$
②$4\sqrt2a^{\frac{3}{2}}+16$ ③$-4\sqrt2a^{\frac{3}{2}}+16$
④$8\sqrt2a^{\frac{3}{2}}+16$ ⑤$-8\sqrt2a^{\frac{3}{2}}+16$
(3)方程式$f(x)=0$の異なる実数解の個数をnとする。次の⓪~⑤のうち、
正しいものは$\boxed{\ \ ケ\ \ }$と$\boxed{\ \ コ\ \ }$である。
$\boxed{\ \ ケ\ \ }, \boxed{\ \ コ\ \ }$の解答群(解答の順序は問わない。)
$⓪n=1ならばa \lt 0 ①a \lt 0ならばn=1$
$②n=2ならばa \lt 0 ③a \lt 0ならばn=2$
$④n=2ならばa \gt 0 ⑤a \gt 0ならばn=3$
[2]$b \gt 0$とし、$g(x)=x^3-3bx+3b^2, h(x)=x^3-x^2+b^2$とおく。
座標平面上の曲線$y=g(x)$を$C_1$, 曲線$y=h(x)$を$C_2$とする。
$C_1$と$C_2$は2点で交わる。これらの交点のx座標をそれぞれ$\alpha,\beta$
$(\alpha \lt \beta)$とすると、$\alpha=\boxed{\ \ サ\ \ }, \beta=\boxed{\ \ シス\ \ }$である。
$\alpha \leqq x \leqq \beta$の範囲で$C_1$と$C_2$で囲まれた図形の面積をSとする。また、
$t \gt \beta$とし、$\beta \leqq x \leqq t$の範囲で$C_1$と$C_2$および直線$x=t$で囲まれた図形の
面積をTとする。
このとき
$S=\int_{\alpha}^{\beta}\boxed{\ \ セ\ \ }dx$
$T=\int_{\beta}^{t}\boxed{\ \ ソ\ \ }dx$
$S-T=\int_{\alpha}^{t}\boxed{\ \ タ\ \ }dx$
であるので
$S-T=\frac{\boxed{\ \ チツ\ \ }}{\boxed{\ \ テ\ \ }}(2t^3-\ \boxed{\ \ ト\ \ }bt^2+\boxed{\ \ ナニ\ \ }b^2t-\ \boxed{\ \ ヌ\ \ }b^3)$
が得られる。
したがって、$S=T$となるのは$t=\frac{\boxed{\ \ ネ\ \ }}{\boxed{\ \ ノ\ \ }}\ b$のときである。
$\boxed{\ \ セ\ \ }~\boxed{\ \ タ\ \ }$の解答群(同じものを繰り返し選んでもよい。)
$⓪\left\{g(x)+h(x)\right\} ①\left\{g(x)-h(x)\right\}$
$②\left\{h(x)-g(x)\right\} ③\left\{2g(x)+2h(x)\right\}$
$④\left\{2g(x)-2h(x)\right\} ⑤\left\{2h(x)-2g(x)\right\}$
$⑥2g(x) ⑦2h(x)$
2022共通テスト数学過去問
この動画を見る
[1]aを実数とし、$f(x)=x^3-6ax+16$
(1)$y=f(x)$のグラフの概形は
$a=0$のとき、$\boxed{\ \ ア\ \ }$
$a \gt 0$のとき、$\boxed{\ \ イ\ \ }$
である.
$\boxed{\ \ ア\ \ },\boxed{\ \ イ\ \ }$については、最も適当なものを、次の⓪~⑤のうちから
1つずつ選べ。ただし、同じものを繰り返し選んでもよい。
(※選択肢は動画参照)
(2)$a \gt 0$とし、pを実数とする。座標平面上の曲線$y=f(x)$と直線$y=p$
が3個の共有点をもつようなpの値の範囲は$\boxed{\ \ ウ\ \ } \lt p \lt \boxed{\ \ エ\ \ }$
である。
$p=\boxed{\ \ ウ\ \ }$のとき、曲線$y=f(x)$と直線$y=p$は2個の共有点をもつ。
それらのx座標を$q,r(q \lt r)$とする。曲線$y=f(x)$と直線$y=p$
が点(r,p)で接することに注意すると
$q=\boxed{\ \ オカ\ \ }\sqrt{\boxed{\ \ キ\ \ }}\ a^{\frac{1}{2}}, r=\sqrt{\boxed{\ \ ク\ \ }}\ a^{\frac{1}{2}}$
と表せる。
$\boxed{\ \ ウ\ \ }, \boxed{\ \ エ\ \ }$の解答群(同じものを繰り返し選んでもよい。)
⓪$2\sqrt2a^{\frac{3}{2}}+16$ ①$-2\sqrt2a^{\frac{3}{2}}+16$
②$4\sqrt2a^{\frac{3}{2}}+16$ ③$-4\sqrt2a^{\frac{3}{2}}+16$
④$8\sqrt2a^{\frac{3}{2}}+16$ ⑤$-8\sqrt2a^{\frac{3}{2}}+16$
(3)方程式$f(x)=0$の異なる実数解の個数をnとする。次の⓪~⑤のうち、
正しいものは$\boxed{\ \ ケ\ \ }$と$\boxed{\ \ コ\ \ }$である。
$\boxed{\ \ ケ\ \ }, \boxed{\ \ コ\ \ }$の解答群(解答の順序は問わない。)
$⓪n=1ならばa \lt 0 ①a \lt 0ならばn=1$
$②n=2ならばa \lt 0 ③a \lt 0ならばn=2$
$④n=2ならばa \gt 0 ⑤a \gt 0ならばn=3$
[2]$b \gt 0$とし、$g(x)=x^3-3bx+3b^2, h(x)=x^3-x^2+b^2$とおく。
座標平面上の曲線$y=g(x)$を$C_1$, 曲線$y=h(x)$を$C_2$とする。
$C_1$と$C_2$は2点で交わる。これらの交点のx座標をそれぞれ$\alpha,\beta$
$(\alpha \lt \beta)$とすると、$\alpha=\boxed{\ \ サ\ \ }, \beta=\boxed{\ \ シス\ \ }$である。
$\alpha \leqq x \leqq \beta$の範囲で$C_1$と$C_2$で囲まれた図形の面積をSとする。また、
$t \gt \beta$とし、$\beta \leqq x \leqq t$の範囲で$C_1$と$C_2$および直線$x=t$で囲まれた図形の
面積をTとする。
このとき
$S=\int_{\alpha}^{\beta}\boxed{\ \ セ\ \ }dx$
$T=\int_{\beta}^{t}\boxed{\ \ ソ\ \ }dx$
$S-T=\int_{\alpha}^{t}\boxed{\ \ タ\ \ }dx$
であるので
$S-T=\frac{\boxed{\ \ チツ\ \ }}{\boxed{\ \ テ\ \ }}(2t^3-\ \boxed{\ \ ト\ \ }bt^2+\boxed{\ \ ナニ\ \ }b^2t-\ \boxed{\ \ ヌ\ \ }b^3)$
が得られる。
したがって、$S=T$となるのは$t=\frac{\boxed{\ \ ネ\ \ }}{\boxed{\ \ ノ\ \ }}\ b$のときである。
$\boxed{\ \ セ\ \ }~\boxed{\ \ タ\ \ }$の解答群(同じものを繰り返し選んでもよい。)
$⓪\left\{g(x)+h(x)\right\} ①\left\{g(x)-h(x)\right\}$
$②\left\{h(x)-g(x)\right\} ③\left\{2g(x)+2h(x)\right\}$
$④\left\{2g(x)-2h(x)\right\} ⑤\left\{2h(x)-2g(x)\right\}$
$⑥2g(x) ⑦2h(x)$
2022共通テスト数学過去問
福田の共通テスト直前演習〜2021年共通テスト数学ⅡB問題1[2]。対数の大小判定の問題。
単元:
#数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
[2]a,bは正の実数であり、$a\neq 1,b\neq 1$を満たすとする。太郎さんは
$\log_ab$と$\log_ba$の大小関係を調べることにした。
(1)太郎さんは次のような考察をした。
まず、$\log_39=\boxed{\ \ ス\ \ }, \log_93=\frac{1}{\boxed{\ \ ス\ \ }}$である、この場合
$\log_39 \gt \log_93$
が成り立つ。
一方、$\log_{\frac{1}{4}}\boxed{\ \ セ\ \ }=-\frac{3}{2},\log_{\boxed{セ}}\frac{1}{4}=-\frac{2}{3}$である。この場合
$\log_{\frac{1}{4}}\boxed{\ \ セ\ \ } \lt \log_{\boxed{セ}}\frac{1}{4}$
が成り立つ。
(2)ここで
$\log_ab=t \ldots①$
とおく。
(1)の考察をもとにして、太郎さんは次の式が成り立つと推測し、
それが正しいことを確かめることにした。
$\log_ba=\frac{1}{t} \ldots②$
①により、$\boxed{\ \ ソ\ \ }$である。このことにより$\boxed{\ \ タ\ \ }$が得られ、②が
成り立つことが確かめられる。
$\boxed{\ \ ソ\ \ }$の解答群
$⓪a^k=t ①a^t=b ②b^a=t$
$③b^t=a ④t^a=b ⑤t^b=a$
$\boxed{\ \ タ\ \ }$の解答群
$⓪a=t^{\frac{1}{b}} ①a=b^{\frac{1}{t}} ②b=t^{\frac{1}{a}}$
$③b=a^{\frac{1}{t}} ④t=b^{\frac{1}{a}} ⑤t=a^{\frac{1}{b}}$
(3)次に、太郎さんは(2)の考察をもとにして
$t \gt \frac{1}{t} \ldots③$
を満たす実数$t(t\neq 0)$の値の範囲を求めた。
太郎さんの考察
$t \gt 0$ならば、③の両辺にtを掛けることにより、$t^2 \gt 1$を得る。
このような$t(t \gt 0)$の値の範囲は$1 \lt t$である。
$t \lt 0$ならば、③の両辺にtを掛けることにより、$t^2 \lt 1$を得る。
このような$t(t \lt 0)$の値の範囲は$-1 \lt t \lt 0$である。
この考察により、③を満たす$t(t\neq 0)$の値の範囲は
$-1 \lt t \lt 0, 1 \lt t$
であることが分かる。
ここで、aの値を一つ定めたとき、不等式
$\log_ab \gt \log_ba \ldots④$
を満たす実数$b(b \gt 0, b\neq 1)$の値の範囲について考える。
④を満たすbの値の範囲は$a \gt 1$のときは$\boxed{\ \ チ\ \ }$であり、
$0 \lt a \lt 1$のときは$\boxed{\ \ ツ\ \ }$である。
$\boxed{\ \ チ\ \ }$の解答群
$⓪0 \lt b \lt \frac{1}{a}, 1 \lt b \lt a ①0 \lt b \lt \frac{1}{a}, a \lt b$
$②\frac{1}{a} \lt b \lt 1, 1 \lt b \lt a ③\frac{1}{a} \lt b \lt 1, a \lt b$
$\boxed{\ \ ツ\ \ }$の解答群
$⓪0 \lt b \lt a, 1 \lt b \lt \frac{1}{a} ①0 \lt b \lt a, \frac{1}{a} \lt b$
$②a \lt b \lt 1, 1 \lt b \lt \frac{1}{a} ③a \lt b \lt 1, \frac{1}{a} \lt b$
(4)$p=\frac{12}{13}, q=\frac{12}{11}, r=\frac{14}{13}$とする。
次の⓪~③のうち、正しいものは$\boxed{\ \ テ\ \ }$である。
$\boxed{\ \ テ\ \ }$の解答群
$⓪\log_pq \gt \log_qp$かつ$\log_pr \gt \log_rp$
$①\log_pq \gt \log_qp$かつ$\log_pr \lt \log_rp$
$②\log_pq \lt \log_qp$かつ$\log_pr \gt \log_rp$
$③\log_pq \lt \log_qp$かつ$\log_pr \lt \log_rp$
2022共通テスト数学過去問
この動画を見る
[2]a,bは正の実数であり、$a\neq 1,b\neq 1$を満たすとする。太郎さんは
$\log_ab$と$\log_ba$の大小関係を調べることにした。
(1)太郎さんは次のような考察をした。
まず、$\log_39=\boxed{\ \ ス\ \ }, \log_93=\frac{1}{\boxed{\ \ ス\ \ }}$である、この場合
$\log_39 \gt \log_93$
が成り立つ。
一方、$\log_{\frac{1}{4}}\boxed{\ \ セ\ \ }=-\frac{3}{2},\log_{\boxed{セ}}\frac{1}{4}=-\frac{2}{3}$である。この場合
$\log_{\frac{1}{4}}\boxed{\ \ セ\ \ } \lt \log_{\boxed{セ}}\frac{1}{4}$
が成り立つ。
(2)ここで
$\log_ab=t \ldots①$
とおく。
(1)の考察をもとにして、太郎さんは次の式が成り立つと推測し、
それが正しいことを確かめることにした。
$\log_ba=\frac{1}{t} \ldots②$
①により、$\boxed{\ \ ソ\ \ }$である。このことにより$\boxed{\ \ タ\ \ }$が得られ、②が
成り立つことが確かめられる。
$\boxed{\ \ ソ\ \ }$の解答群
$⓪a^k=t ①a^t=b ②b^a=t$
$③b^t=a ④t^a=b ⑤t^b=a$
$\boxed{\ \ タ\ \ }$の解答群
$⓪a=t^{\frac{1}{b}} ①a=b^{\frac{1}{t}} ②b=t^{\frac{1}{a}}$
$③b=a^{\frac{1}{t}} ④t=b^{\frac{1}{a}} ⑤t=a^{\frac{1}{b}}$
(3)次に、太郎さんは(2)の考察をもとにして
$t \gt \frac{1}{t} \ldots③$
を満たす実数$t(t\neq 0)$の値の範囲を求めた。
太郎さんの考察
$t \gt 0$ならば、③の両辺にtを掛けることにより、$t^2 \gt 1$を得る。
このような$t(t \gt 0)$の値の範囲は$1 \lt t$である。
$t \lt 0$ならば、③の両辺にtを掛けることにより、$t^2 \lt 1$を得る。
このような$t(t \lt 0)$の値の範囲は$-1 \lt t \lt 0$である。
この考察により、③を満たす$t(t\neq 0)$の値の範囲は
$-1 \lt t \lt 0, 1 \lt t$
であることが分かる。
ここで、aの値を一つ定めたとき、不等式
$\log_ab \gt \log_ba \ldots④$
を満たす実数$b(b \gt 0, b\neq 1)$の値の範囲について考える。
④を満たすbの値の範囲は$a \gt 1$のときは$\boxed{\ \ チ\ \ }$であり、
$0 \lt a \lt 1$のときは$\boxed{\ \ ツ\ \ }$である。
$\boxed{\ \ チ\ \ }$の解答群
$⓪0 \lt b \lt \frac{1}{a}, 1 \lt b \lt a ①0 \lt b \lt \frac{1}{a}, a \lt b$
$②\frac{1}{a} \lt b \lt 1, 1 \lt b \lt a ③\frac{1}{a} \lt b \lt 1, a \lt b$
$\boxed{\ \ ツ\ \ }$の解答群
$⓪0 \lt b \lt a, 1 \lt b \lt \frac{1}{a} ①0 \lt b \lt a, \frac{1}{a} \lt b$
$②a \lt b \lt 1, 1 \lt b \lt \frac{1}{a} ③a \lt b \lt 1, \frac{1}{a} \lt b$
(4)$p=\frac{12}{13}, q=\frac{12}{11}, r=\frac{14}{13}$とする。
次の⓪~③のうち、正しいものは$\boxed{\ \ テ\ \ }$である。
$\boxed{\ \ テ\ \ }$の解答群
$⓪\log_pq \gt \log_qp$かつ$\log_pr \gt \log_rp$
$①\log_pq \gt \log_qp$かつ$\log_pr \lt \log_rp$
$②\log_pq \lt \log_qp$かつ$\log_pr \gt \log_rp$
$③\log_pq \lt \log_qp$かつ$\log_pr \lt \log_rp$
2022共通テスト数学過去問
【高校数学】できたらすごい~共通テスト数学ⅠA第4問解説~【大学受験】
福田の共通テスト直前演習〜2021年共通テスト数学ⅡB問題1[1]。直線と円の表す領域とが共有点をもつ条件の問題。
単元:
#数Ⅰ#数Ⅱ#大学入試過去問(数学)#数と式#集合と命題(集合・命題と条件・背理法)#図形と方程式#円と方程式#軌跡と領域#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
[1]座標平面上に点A(-8,0)をとる。また、不等式
$x^2+y^2-4x-10y+4 \leqq 0$
の表す領域をDとする。
(1)領域Dは、中心が点$(\boxed{\ \ ア\ \ },\boxed{\ \ イ\ \ })$、半径が$\boxed{\ \ ウ\ \ }$の円の
$\boxed{\ \ エ\ \ }$である。
$\boxed{\ \ エ\ \ }$の解答群
⓪ 周 ① 内部 ② 外部
③ 周および内部 ④ 周および外部
以下、点$(\boxed{\ \ ア\ \ },\boxed{\ \ イ\ \ })$をQとし、方程式
$x^2+y^2-4x-10y+4=0$
の表す図形をCとする。
(2)点Aを通る直線と領域Dが共有点をもつのはどのようなときかを考えよう。
$(\textrm{i})(1)$により、直線$y=\boxed{\ \ オ\ \ }$は点Aを通るCの接線の一つとなること
がわかる。
太郎さんと花子さんは点Aを通るCのもう一つの接線について話している。
点Aを通り、傾きがkの直線をlとする。
太郎:直線lの方程式は$y=k(x+8)$と表すことができるから、
これを
$x^2+y^2-4x-10y+4=0$
に代入することで接線を求められそうだね。
花子:x軸と直線AQのなす角のタンジェントに着目することでも
求められそうだよ。
$(\textrm{ii})$ 太郎さんの求め方について考えてみよう。
$y=k(x+8)$を$x^2+y^2-4x-10y+4=0$に代入すると、
xについての2次方程式
$(k^2+1)x^2+(16k^2-10k-4)x+64k^2-80k+4=0$
が得られる。この方程式が$\boxed{\ \ カ\ \ }$ときのkの値が接線の傾きとなる。
$\boxed{\ \ カ\ \ }$の解答群
⓪重解をもつ
①異なる2つの実数解をもち、1つは0である
②異なる2つの正の実数解をもつ
③正の実数解と負の実数解をもつ
④異なる2つの負の実数解をもつ
⑤異なる2つの虚数解をもつ
$(\textrm{iii})$花子さんの求め方について考えてみよう。
x軸と直線AQのなす角を$\theta(0 \lt \theta \leqq \frac{\pi}{2})$とすると
$\tan\theta=\frac{\boxed{\ \ キ\ \ }}{\boxed{\ \ ク\ \ }}$
であり、直線$y=\boxed{\ \ オ\ \ }$と異なる接線の傾きは$\tan\boxed{\ \ ケ\ \ }$
と表すことができる。
$\boxed{\ \ ケ\ \ }$の解答群
⓪$\theta$ ①$2\theta$ ②$(\theta+\frac{\pi}{2})$
③$(\theta-\frac{\pi}{2})$ ④$(\theta+\pi)$ ⑤$(\theta-\pi)$
⑥$(2\theta+\frac{\pi}{2})$ ⑦$(2\theta-\frac{\pi}{2})$
$(\textrm{iv})$点Aを通るCの接線のうち、直線$y=\boxed{\ \ オ\ \ }$と異なる接線の傾き
を$k_0$とする。このとき、$(\textrm{ii})$または$(\textrm{iii})$の考え方を用いることにより
$k_0=\frac{\boxed{\ \ コ\ \ }}{\boxed{\ \ サ\ \ }}$
であることがわかる。
直線lと領域Dが共有点をもつようなkの値の範囲は$\boxed{\ \ シ\ \ }$である。
$\boxed{\ \ シ\ \ }$の解答群
⓪$k \gt k_0$ ①$k \geqq k_0$
②$k \lt k_0$ ③$k \leqq k_0$
④$0 \lt k \lt k_0$ ⑤$0 \leqq k \leqq k_0$
2022共通テスト数学過去問
この動画を見る
[1]座標平面上に点A(-8,0)をとる。また、不等式
$x^2+y^2-4x-10y+4 \leqq 0$
の表す領域をDとする。
(1)領域Dは、中心が点$(\boxed{\ \ ア\ \ },\boxed{\ \ イ\ \ })$、半径が$\boxed{\ \ ウ\ \ }$の円の
$\boxed{\ \ エ\ \ }$である。
$\boxed{\ \ エ\ \ }$の解答群
⓪ 周 ① 内部 ② 外部
③ 周および内部 ④ 周および外部
以下、点$(\boxed{\ \ ア\ \ },\boxed{\ \ イ\ \ })$をQとし、方程式
$x^2+y^2-4x-10y+4=0$
の表す図形をCとする。
(2)点Aを通る直線と領域Dが共有点をもつのはどのようなときかを考えよう。
$(\textrm{i})(1)$により、直線$y=\boxed{\ \ オ\ \ }$は点Aを通るCの接線の一つとなること
がわかる。
太郎さんと花子さんは点Aを通るCのもう一つの接線について話している。
点Aを通り、傾きがkの直線をlとする。
太郎:直線lの方程式は$y=k(x+8)$と表すことができるから、
これを
$x^2+y^2-4x-10y+4=0$
に代入することで接線を求められそうだね。
花子:x軸と直線AQのなす角のタンジェントに着目することでも
求められそうだよ。
$(\textrm{ii})$ 太郎さんの求め方について考えてみよう。
$y=k(x+8)$を$x^2+y^2-4x-10y+4=0$に代入すると、
xについての2次方程式
$(k^2+1)x^2+(16k^2-10k-4)x+64k^2-80k+4=0$
が得られる。この方程式が$\boxed{\ \ カ\ \ }$ときのkの値が接線の傾きとなる。
$\boxed{\ \ カ\ \ }$の解答群
⓪重解をもつ
①異なる2つの実数解をもち、1つは0である
②異なる2つの正の実数解をもつ
③正の実数解と負の実数解をもつ
④異なる2つの負の実数解をもつ
⑤異なる2つの虚数解をもつ
$(\textrm{iii})$花子さんの求め方について考えてみよう。
x軸と直線AQのなす角を$\theta(0 \lt \theta \leqq \frac{\pi}{2})$とすると
$\tan\theta=\frac{\boxed{\ \ キ\ \ }}{\boxed{\ \ ク\ \ }}$
であり、直線$y=\boxed{\ \ オ\ \ }$と異なる接線の傾きは$\tan\boxed{\ \ ケ\ \ }$
と表すことができる。
$\boxed{\ \ ケ\ \ }$の解答群
⓪$\theta$ ①$2\theta$ ②$(\theta+\frac{\pi}{2})$
③$(\theta-\frac{\pi}{2})$ ④$(\theta+\pi)$ ⑤$(\theta-\pi)$
⑥$(2\theta+\frac{\pi}{2})$ ⑦$(2\theta-\frac{\pi}{2})$
$(\textrm{iv})$点Aを通るCの接線のうち、直線$y=\boxed{\ \ オ\ \ }$と異なる接線の傾き
を$k_0$とする。このとき、$(\textrm{ii})$または$(\textrm{iii})$の考え方を用いることにより
$k_0=\frac{\boxed{\ \ コ\ \ }}{\boxed{\ \ サ\ \ }}$
であることがわかる。
直線lと領域Dが共有点をもつようなkの値の範囲は$\boxed{\ \ シ\ \ }$である。
$\boxed{\ \ シ\ \ }$の解答群
⓪$k \gt k_0$ ①$k \geqq k_0$
②$k \lt k_0$ ③$k \leqq k_0$
④$0 \lt k \lt k_0$ ⑤$0 \leqq k \leqq k_0$
2022共通テスト数学過去問
福田の共通テスト解答速報〜2022年共通テスト数学IA問題5。平面幾何の問題。
単元:
#数A#大学入試過去問(数学)#図形の性質#内心・外心・重心とチェバ・メネラウス#方べきの定理と2つの円の関係#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
第5問 $\triangle ABC$の重心をGとし、線分AG上で点Aとは異なる位置に点Dをとる。
直線AGと辺BCの交点をEとする。また、直線BC上で辺BC上にはない位置に点Fをとる。
直線DFと辺ABの交点をP、直線DFと辺ACの交点をQとする。
(1)点Dは線分AGの中点であるとする。
このとき、$\triangle ABC$の形状に関係なく$\frac{AD}{DE}=\frac{\boxed{\ \ ア\ \ }}{\boxed{\ \ イ\ \ }}$
である。また、点Fの位置に関係なく$\frac{BP}{AP}=\boxed{\ \ ウ\ \ }×\frac{\boxed{\ \ エ\ \ }}{\boxed{\ \ オ\ \ }},$
$\frac{CQ}{AQ}=\boxed{\ \ カ\ \ }×\frac{\boxed{\ \ キ\ \ }}{\boxed{\ \ ク\ \ }}$であるので、常に$\frac{BP}{AP}+\frac{CQ}{AQ}=\boxed{\ \ ケ\ \ }$
$\boxed{\ \ エ\ \ }~\boxed{\ \ ケ\ \ }$の解答群
⓪BC ①BF ②CF ③EF ④FP ⑤FQ ⑥PQ
(2)$AB=9, BC=8, AC=6$とし、(1)と同様に、点Dは線分AGの中点であるとする。
ここで、4点B,C,Q,Pが同一円周上にあるように点Fをとる。このとき、
$AQ=\frac{\boxed{\ \ コ\ \ }}{\boxed{\ \ サ\ \ }}\ AP$であるから
$AP=\frac{\boxed{\ \ シス\ \ }}{\boxed{\ \ セ\ \ }}, AQ=\frac{\boxed{\ \ ソタ\ \ }}{\boxed{\ \ チ\ \ }}$であり、
$CF=\frac{\boxed{\ \ ツテ\ \ }}{\boxed{\ \ トナ\ \ }}$である。
(3)$\triangle ABC$の形状や点Fの位置に関係なく、常に$\frac{BP}{AP}+\frac{CQ}{AQ}=10$となるのは
$\frac{AD}{DG}=\frac{\boxed{\ \ ニ\ \ }}{\boxed{\ \ ヌ\ \ }}$のときである。
2022共通テスト数学過去問
この動画を見る
第5問 $\triangle ABC$の重心をGとし、線分AG上で点Aとは異なる位置に点Dをとる。
直線AGと辺BCの交点をEとする。また、直線BC上で辺BC上にはない位置に点Fをとる。
直線DFと辺ABの交点をP、直線DFと辺ACの交点をQとする。
(1)点Dは線分AGの中点であるとする。
このとき、$\triangle ABC$の形状に関係なく$\frac{AD}{DE}=\frac{\boxed{\ \ ア\ \ }}{\boxed{\ \ イ\ \ }}$
である。また、点Fの位置に関係なく$\frac{BP}{AP}=\boxed{\ \ ウ\ \ }×\frac{\boxed{\ \ エ\ \ }}{\boxed{\ \ オ\ \ }},$
$\frac{CQ}{AQ}=\boxed{\ \ カ\ \ }×\frac{\boxed{\ \ キ\ \ }}{\boxed{\ \ ク\ \ }}$であるので、常に$\frac{BP}{AP}+\frac{CQ}{AQ}=\boxed{\ \ ケ\ \ }$
$\boxed{\ \ エ\ \ }~\boxed{\ \ ケ\ \ }$の解答群
⓪BC ①BF ②CF ③EF ④FP ⑤FQ ⑥PQ
(2)$AB=9, BC=8, AC=6$とし、(1)と同様に、点Dは線分AGの中点であるとする。
ここで、4点B,C,Q,Pが同一円周上にあるように点Fをとる。このとき、
$AQ=\frac{\boxed{\ \ コ\ \ }}{\boxed{\ \ サ\ \ }}\ AP$であるから
$AP=\frac{\boxed{\ \ シス\ \ }}{\boxed{\ \ セ\ \ }}, AQ=\frac{\boxed{\ \ ソタ\ \ }}{\boxed{\ \ チ\ \ }}$であり、
$CF=\frac{\boxed{\ \ ツテ\ \ }}{\boxed{\ \ トナ\ \ }}$である。
(3)$\triangle ABC$の形状や点Fの位置に関係なく、常に$\frac{BP}{AP}+\frac{CQ}{AQ}=10$となるのは
$\frac{AD}{DG}=\frac{\boxed{\ \ ニ\ \ }}{\boxed{\ \ ヌ\ \ }}$のときである。
2022共通テスト数学過去問
福田の共通テスト解答速報〜2022年共通テスト数学IA問題4。整数解の問題。
単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
第4問
(1)$5^4=625$を$2^4$で割った時の余りは1に等しい。このことを用いると、不定方程式
$5^4x-2^4y=1 \ldots①$
の整数解のうち、xが正の整数で最小になるのは$x=\boxed{\ \ ア\ \ },y=\boxed{\ \ イウ\ \ }$であることがわかる。
また、①の整数解のうち、xが2桁の正の整数で最小になるのは
$x=\boxed{\ \ エオ\ \ }, y=\boxed{\ \ カキク\ \ }$である。
(2)次に、$625^2$を$5^5$で割った時の余りと、$2^5$で割った時の余りについて考えてみよう。
まず、
$625^2=5^{\boxed{ケ}}$
であり、また$m=\boxed{\ \ イウ\ \ }$とすると、$625^2=2^{\boxed{ケ}}\ m^2+2^{\boxed{コ}}\ m+1$である。
これらにより、$625^2$を$5^5$で割った時の余りと、$2^5$で割った時の余りがわかる。
(3)(2)の考察は、不定方程式
$5^5x-2^5y=1 \ldots②$
の整数解を調べるために利用できる。x,yを②の整数解とする。
$5^5x$は$5^5$の倍数であり、$2^5$で割った時の余りは1となる。よって(2)により、
$5^5x-625^2$は$5^5$でも$2^5$でも割り切れる。$5^5$と$2^5$は互いに素なので
$5^5x-625^2$は$5^5・2^5$の倍数である。このことから、②の整数解のうち、
xが3桁の正の整数で最小になるのは
$x=\boxed{\ \ サシス\ \ }, y=\boxed{\ \ セソタチツ\ \ }$
であることが分かる。
(4)$11^4$を$2^4$で割った時の余りは1に等しい。不定方程式
$11^5x-2^5y=1$
の整数解のうち、xが正の整数で最小になるのは
$x=\boxed{\ \ テト\ \ }, y=\boxed{\ \ ナニヌネノ\ \ }$ である。
2022共通テスト数学過去問
この動画を見る
第4問
(1)$5^4=625$を$2^4$で割った時の余りは1に等しい。このことを用いると、不定方程式
$5^4x-2^4y=1 \ldots①$
の整数解のうち、xが正の整数で最小になるのは$x=\boxed{\ \ ア\ \ },y=\boxed{\ \ イウ\ \ }$であることがわかる。
また、①の整数解のうち、xが2桁の正の整数で最小になるのは
$x=\boxed{\ \ エオ\ \ }, y=\boxed{\ \ カキク\ \ }$である。
(2)次に、$625^2$を$5^5$で割った時の余りと、$2^5$で割った時の余りについて考えてみよう。
まず、
$625^2=5^{\boxed{ケ}}$
であり、また$m=\boxed{\ \ イウ\ \ }$とすると、$625^2=2^{\boxed{ケ}}\ m^2+2^{\boxed{コ}}\ m+1$である。
これらにより、$625^2$を$5^5$で割った時の余りと、$2^5$で割った時の余りがわかる。
(3)(2)の考察は、不定方程式
$5^5x-2^5y=1 \ldots②$
の整数解を調べるために利用できる。x,yを②の整数解とする。
$5^5x$は$5^5$の倍数であり、$2^5$で割った時の余りは1となる。よって(2)により、
$5^5x-625^2$は$5^5$でも$2^5$でも割り切れる。$5^5$と$2^5$は互いに素なので
$5^5x-625^2$は$5^5・2^5$の倍数である。このことから、②の整数解のうち、
xが3桁の正の整数で最小になるのは
$x=\boxed{\ \ サシス\ \ }, y=\boxed{\ \ セソタチツ\ \ }$
であることが分かる。
(4)$11^4$を$2^4$で割った時の余りは1に等しい。不定方程式
$11^5x-2^5y=1$
の整数解のうち、xが正の整数で最小になるのは
$x=\boxed{\ \ テト\ \ }, y=\boxed{\ \ ナニヌネノ\ \ }$ である。
2022共通テスト数学過去問
福田の共通テスト解答速報〜2022年共通テスト数学IA問題2[2]。データの分析の問題。
単元:
#数Ⅰ#大学入試過去問(数学)#データの分析#データの分析#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
[2] 日本国外における日本語教育の状況を調べるために、独立行政法人国際交流基金では
「海外日本教育機関調査」を実施しており、各国における教育機関数,教員数,学習数
が調べられている。2018年度において学習者数が5000人以上の国と地域(以下、国)
は29ヵ国であった。これら29ヵ国について、2009年度と2018年度のデータが得られている。
(1) 各国において、学習者数を教員数で割ることにより、国ごとの
「教員1人当たりの学習者数」を算出することができる。図1と図2(※動画参照)は、
2009年度および2018年度における「教員1人当たりの学習者数」のヒストグラム
である。これら二つのヒストグラムから、9年間の変化に関して、後のことが読み取れる。
なお、ヒストグラムの各階級の区間は、左側の数値を含み、右側の数値を含まない。
・2009年度と2018年度の中央値が含まれる階級の階級値を比較すると、$\boxed{ケ}$
・2009年度と2018年度の第1四分位数が含まれる階級の階級値を比較すると、$\boxed{コ}$
・2009年度と2018年度の第3四分位数が含まれる階級の階級値を比較すると、$\boxed{サ}$
・2009年度と2018年度の範囲を比較すると、$\boxed{シ}$。
・2009年度と2018年度の四分位範囲を比較すると、$\boxed{ス}$。
$\boxed{ケ}~\boxed{ス}$を次の⓪~③のうちから一つ選べ。
⓪ 2018年度の方が小さい
① 2018年度の方が大きい
② 両者は等しい
③ これら二つのヒストグラムからだけでは両者の大小を判断できない
(2)各国において、学習者数を教育機関数で割ることにより、「教育機関1機関あたりの
学習者数」も算出した。図3(※動画参照)は、2009年度における
「教育機関1機関あたりの学習者数」の箱ひげ図である。
2009年度について、「教育機関1機関あたりの学習者数」(横軸)と
「教員1人当たりの学習者数」(縦軸)の散布図は$\boxed{セ}$である。ここで、
2009年度における「教員1人当たりの学習者数」のヒストグラムである(1)の図1
を、図4(※動画参照)として再掲しておく。
$\boxed{セ}$については、最も適当なものを、次の⓪~③のうちから一つ選べ。
なお、これらの散布図には、完全に重なっている点はない。
(※選択肢は動画参照)
(3) 各国における2018年度の学習者数を100としたときの2009年度の学習者数S,
および、各国における2018年度の教員数を100としたときの2009年度の
教員数Tを算出した。
例えば、学習者数について説明すると、ある国において、2009年度が44272人,
2018年度が174521人であった場合、2009年度の学習者数Sは
\frac{44272}{174521}×100 より25.4と算出される。
表1(※動画参照)はSとTについて、平均値、標準偏差および共分散を計算したものである。
ただし、SとTの共分散は、Sの偏差とTの偏差の積の平均値である。
表1の数値が四捨五入していない正確な値であるとして、SとTの相関係数
を求めると$\boxed{ソ}$, $\boxed{タチ}$ である。
(4) 表1と(3)で求めた相関係数を参考にすると、(3)で算出した2009年度の
S(横軸)とT(縦軸)の散布図は$\boxed{ツ}$である。
$\boxed{ツ}$については、最も適当なものを、次の⓪~③のうちから一つ
選べ。なお、これらの散布図には、完全に重なっている点はない。
(※選択肢は動画参照)
2022共通テスト数学過去問
この動画を見る
[2] 日本国外における日本語教育の状況を調べるために、独立行政法人国際交流基金では
「海外日本教育機関調査」を実施しており、各国における教育機関数,教員数,学習数
が調べられている。2018年度において学習者数が5000人以上の国と地域(以下、国)
は29ヵ国であった。これら29ヵ国について、2009年度と2018年度のデータが得られている。
(1) 各国において、学習者数を教員数で割ることにより、国ごとの
「教員1人当たりの学習者数」を算出することができる。図1と図2(※動画参照)は、
2009年度および2018年度における「教員1人当たりの学習者数」のヒストグラム
である。これら二つのヒストグラムから、9年間の変化に関して、後のことが読み取れる。
なお、ヒストグラムの各階級の区間は、左側の数値を含み、右側の数値を含まない。
・2009年度と2018年度の中央値が含まれる階級の階級値を比較すると、$\boxed{ケ}$
・2009年度と2018年度の第1四分位数が含まれる階級の階級値を比較すると、$\boxed{コ}$
・2009年度と2018年度の第3四分位数が含まれる階級の階級値を比較すると、$\boxed{サ}$
・2009年度と2018年度の範囲を比較すると、$\boxed{シ}$。
・2009年度と2018年度の四分位範囲を比較すると、$\boxed{ス}$。
$\boxed{ケ}~\boxed{ス}$を次の⓪~③のうちから一つ選べ。
⓪ 2018年度の方が小さい
① 2018年度の方が大きい
② 両者は等しい
③ これら二つのヒストグラムからだけでは両者の大小を判断できない
(2)各国において、学習者数を教育機関数で割ることにより、「教育機関1機関あたりの
学習者数」も算出した。図3(※動画参照)は、2009年度における
「教育機関1機関あたりの学習者数」の箱ひげ図である。
2009年度について、「教育機関1機関あたりの学習者数」(横軸)と
「教員1人当たりの学習者数」(縦軸)の散布図は$\boxed{セ}$である。ここで、
2009年度における「教員1人当たりの学習者数」のヒストグラムである(1)の図1
を、図4(※動画参照)として再掲しておく。
$\boxed{セ}$については、最も適当なものを、次の⓪~③のうちから一つ選べ。
なお、これらの散布図には、完全に重なっている点はない。
(※選択肢は動画参照)
(3) 各国における2018年度の学習者数を100としたときの2009年度の学習者数S,
および、各国における2018年度の教員数を100としたときの2009年度の
教員数Tを算出した。
例えば、学習者数について説明すると、ある国において、2009年度が44272人,
2018年度が174521人であった場合、2009年度の学習者数Sは
\frac{44272}{174521}×100 より25.4と算出される。
表1(※動画参照)はSとTについて、平均値、標準偏差および共分散を計算したものである。
ただし、SとTの共分散は、Sの偏差とTの偏差の積の平均値である。
表1の数値が四捨五入していない正確な値であるとして、SとTの相関係数
を求めると$\boxed{ソ}$, $\boxed{タチ}$ である。
(4) 表1と(3)で求めた相関係数を参考にすると、(3)で算出した2009年度の
S(横軸)とT(縦軸)の散布図は$\boxed{ツ}$である。
$\boxed{ツ}$については、最も適当なものを、次の⓪~③のうちから一つ
選べ。なお、これらの散布図には、完全に重なっている点はない。
(※選択肢は動画参照)
2022共通テスト数学過去問
福田の共通テスト解答速報〜2022年共通テスト数学IA問題1[2]。三角比を用いた測量の問題。
単元:
#数Ⅰ#大学入試過去問(数学)#図形と計量#三角比(三角比・拡張・相互関係・単位円)#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
第1問\ [2] 太郎さんは花子さんは、キャンプ場のガイドブックにある地図を見ながら、
後のように話している。
太郎:キャンプ場の地点Aから山頂Bを見上げる角度はどれくらいかな。
花子:地図アプリを使って、地点Aと山頂Bを含む断面図を調べたら、
図1(※動画参照)のようになったよ。点Cは、山頂Bから地点Aを通る水平面に下ろした
垂線とその水平面との交点のことだよ。
太郎:図1の角度\thetaは、AC,BCの長さを定規で測って、
三角比の表を用いて調べたら16°だったよ。
花子:本当に16°なの?図1の鉛直方向の縮尺と水平方向の縮尺は等しい
のかな?
図1の$\theta$はちょうど16°であったとする。しかし、図1の縮尺は、水平方向が$\frac{1}{100000}$
であるのに対して鉛直方向は$\frac{1}{25000}$であった。
実際にキャンプ場の地点Aから山頂Bを見上げる角である$\angle BAC$を考えると、
$\tan\angle BACは\boxed{\ \ コ\ \ }.\boxed{\ \ サシス\ \ }$である。
したがって、$\angle BAC$の大きさは$\boxed{セ}$、ただし、目の高さは無視して考えるものとする。
$\boxed{セ}$の解答群
⓪3°より大きく4°より小さい ①ちょうど4°である ②4°より大きく5°より小さい
③ちょうど16°である ④48°より大きく49°より小さい ⑤ちょうど49°である
⑥49°より大きく50°より小さい ⑦63°より大きく64°より小さい ⑧ちょうど64°である
⑨64°より大きく65°より小さい
2022共通テスト数学過去問
この動画を見る
第1問\ [2] 太郎さんは花子さんは、キャンプ場のガイドブックにある地図を見ながら、
後のように話している。
太郎:キャンプ場の地点Aから山頂Bを見上げる角度はどれくらいかな。
花子:地図アプリを使って、地点Aと山頂Bを含む断面図を調べたら、
図1(※動画参照)のようになったよ。点Cは、山頂Bから地点Aを通る水平面に下ろした
垂線とその水平面との交点のことだよ。
太郎:図1の角度\thetaは、AC,BCの長さを定規で測って、
三角比の表を用いて調べたら16°だったよ。
花子:本当に16°なの?図1の鉛直方向の縮尺と水平方向の縮尺は等しい
のかな?
図1の$\theta$はちょうど16°であったとする。しかし、図1の縮尺は、水平方向が$\frac{1}{100000}$
であるのに対して鉛直方向は$\frac{1}{25000}$であった。
実際にキャンプ場の地点Aから山頂Bを見上げる角である$\angle BAC$を考えると、
$\tan\angle BACは\boxed{\ \ コ\ \ }.\boxed{\ \ サシス\ \ }$である。
したがって、$\angle BAC$の大きさは$\boxed{セ}$、ただし、目の高さは無視して考えるものとする。
$\boxed{セ}$の解答群
⓪3°より大きく4°より小さい ①ちょうど4°である ②4°より大きく5°より小さい
③ちょうど16°である ④48°より大きく49°より小さい ⑤ちょうど49°である
⑥49°より大きく50°より小さい ⑦63°より大きく64°より小さい ⑧ちょうど64°である
⑨64°より大きく65°より小さい
2022共通テスト数学過去問
【高校数学】ここは基本~共通テスト数学ⅠA第4問解説~【大学受験】
【高校数学】まだまだ序章~共通テスト数学ⅠA第4問解説~【大学受験】
福田の共通テスト解答速報〜2022年共通テスト数学IA問題2[1]。2次方程式、2次関数、必要十分条件の問題。
単元:
#数Ⅰ#大学入試過去問(数学)#数と式#2次関数#集合と命題(集合・命題と条件・背理法)#2次方程式と2次不等式#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
第2問\ [1] p,qを実数とする。
花子さんと太郎さんは、次の二つの2次方程式について考えている。
$x^2+px+q=0 \ldots①$
$x^2+qx+p=0 \ldots②$
①または②を満たす実数xの個数をnとおく。
(1)$p=4,q=-4$のとき、$n=\boxed{ア}$である。
また、$p=1,q=-2$のとき、$n=\boxed{イ}$である。
(2)$p=-6$のとき、$n=3$になる場合を考える。
花子:例えば、①と②を共に満たす実数xがあるときは$n=3$に
なりそうだね。
太郎:それを$\alpha$としたら、$\alpha^2-6\alpha+q=0と\alpha^2+q\alpha-6=0$が
成り立つよ。
花子:なるほど。それならば、$\alpha^2$を消去すれば、$\alpha$の値が求められそうだね。
太郎:確かに$\alpha$の値が求まるけど、実際に$n=3$となっているか
どうかの確認が必要だね。
花子:これ以外にも$n=3$となる場合がありそうだね。
$n=3$となるqの値は
$q=\boxed{ウ}, \boxed{エ}$
である。ただし、$\boxed{ウ} \lt \boxed{エ}$とする。
$p=-6$に固定したまま、qの値だけを変化させる。
$y=x^2-6x+q \ldots③$
$y=x^2+qx-6 \ldots④$
(1)この二つのグラフについて、$q=1$のときのグラフを点線で、
qの値を1から増加させたときのグラフを実線でそれぞれ表す。
このとき、③のグラフの移動の様子を示すと$\boxed{オ}$となり、
④のグラフの移動の様子を示すと$\boxed{カ}$となる。
$\boxed{オ}, \boxed{カ}$については、最も適当なものを、次の⓪~⑦
のうちから一つずつ選べ。ただし、同じものを繰り返し選んでもよい。
なお、x軸とy軸は省略しているが、x軸は右方向、
y軸は上方向がそれぞれ正の方向である。
(※選択肢は動画参照)
(4)$\boxed{ウ} \lt q \lt \boxed{エ}$とする。全体集合Uを実数全体の集合とし、
Uの部分集合A,Bを
$A=\left\{x\ |\ x^2-6x+q \lt 0 \right\}$
$B=\left\{x\ |\ x^2+qx-6 \lt 0 \right\}$
とする。Uの部分集合Xに対し、Xの補集合を$\bar{ X }$と表す。このとき、
次のことが成り立つ。
・$x \in A$は、$x \in B$であるための$\boxed{キ}$。
・$x \in B$は、$x \in \bar{ A }$であるための$\boxed{ク}$。
$\boxed{キ}, \boxed{ク}$の解答群(同じものを繰り返し選んでもよい。)
⓪必要条件であるが、十分条件ではない
①十分条件であるが、必要条件ではない
②必要十分条件である
③必要条件でも十分条件でもない
2022共通テスト数学過去問
この動画を見る
第2問\ [1] p,qを実数とする。
花子さんと太郎さんは、次の二つの2次方程式について考えている。
$x^2+px+q=0 \ldots①$
$x^2+qx+p=0 \ldots②$
①または②を満たす実数xの個数をnとおく。
(1)$p=4,q=-4$のとき、$n=\boxed{ア}$である。
また、$p=1,q=-2$のとき、$n=\boxed{イ}$である。
(2)$p=-6$のとき、$n=3$になる場合を考える。
花子:例えば、①と②を共に満たす実数xがあるときは$n=3$に
なりそうだね。
太郎:それを$\alpha$としたら、$\alpha^2-6\alpha+q=0と\alpha^2+q\alpha-6=0$が
成り立つよ。
花子:なるほど。それならば、$\alpha^2$を消去すれば、$\alpha$の値が求められそうだね。
太郎:確かに$\alpha$の値が求まるけど、実際に$n=3$となっているか
どうかの確認が必要だね。
花子:これ以外にも$n=3$となる場合がありそうだね。
$n=3$となるqの値は
$q=\boxed{ウ}, \boxed{エ}$
である。ただし、$\boxed{ウ} \lt \boxed{エ}$とする。
$p=-6$に固定したまま、qの値だけを変化させる。
$y=x^2-6x+q \ldots③$
$y=x^2+qx-6 \ldots④$
(1)この二つのグラフについて、$q=1$のときのグラフを点線で、
qの値を1から増加させたときのグラフを実線でそれぞれ表す。
このとき、③のグラフの移動の様子を示すと$\boxed{オ}$となり、
④のグラフの移動の様子を示すと$\boxed{カ}$となる。
$\boxed{オ}, \boxed{カ}$については、最も適当なものを、次の⓪~⑦
のうちから一つずつ選べ。ただし、同じものを繰り返し選んでもよい。
なお、x軸とy軸は省略しているが、x軸は右方向、
y軸は上方向がそれぞれ正の方向である。
(※選択肢は動画参照)
(4)$\boxed{ウ} \lt q \lt \boxed{エ}$とする。全体集合Uを実数全体の集合とし、
Uの部分集合A,Bを
$A=\left\{x\ |\ x^2-6x+q \lt 0 \right\}$
$B=\left\{x\ |\ x^2+qx-6 \lt 0 \right\}$
とする。Uの部分集合Xに対し、Xの補集合を$\bar{ X }$と表す。このとき、
次のことが成り立つ。
・$x \in A$は、$x \in B$であるための$\boxed{キ}$。
・$x \in B$は、$x \in \bar{ A }$であるための$\boxed{ク}$。
$\boxed{キ}, \boxed{ク}$の解答群(同じものを繰り返し選んでもよい。)
⓪必要条件であるが、十分条件ではない
①十分条件であるが、必要条件ではない
②必要十分条件である
③必要条件でも十分条件でもない
2022共通テスト数学過去問
福田の共通テスト解答速報〜2022年共通テスト数学IA問題3。プレゼントの交換の確率の問題。
単元:
#数A#大学入試過去問(数学)#場合の数と確率#確率#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
第3問\ 複数人がそれぞれプレゼントを一つずつ持ち寄り、交換会を開く。ただし、プレゼントは
全て異なるとする。
プレゼントの交換は次の手順で行う。
手順:外見が同じ袋を人数分用意し、各袋にプレゼントを一つずつ入れたうえで、
各参加者に袋を一つずつでたらめに配る。各参加者は配られた袋の中の
プレゼントを受け取る。
交換の結果、1人でも自分の持参したプレゼントを受け取った場合は、交換をやり直す。
そして、全員が自分以外の人の持参したプレゼントを受け取ったところで交換会を終了する。
(1)2人または3人で交換会を開く場合を考える。
$(\textrm{i})$2人で交換会を開く場合、1回目の交換で交換会が終了するプレゼントの受け取り方は
$\boxed{ア}$通りある。したがって1回目の交換で交換会が終了する確率は$\frac{\boxed{イ}}{\boxed{ウ}}$である。
$(\textrm{ii})$3人で交換会を開く場合、1回目の交換で交換会が終了するプレゼントの受け取り方は
$\boxed{エ}$通りある。したがって1回目の交換で交換会が終了する確率は$\frac{\boxed{オ}}{\boxed{カ}}$である。
$(\textrm{iii})$3人で交換会を開く場合、4回以下の交換で交換会が終了する確率は$\frac{\boxed{キク}}{\boxed{ケコ}}$である。
(2)4人で交換会を開く場合、1回目の交換で交換会が終了する確率を
次の構想に基づいて求めてみよう。
構想:1回目の交換で交換会が終了しないプレゼントの受け取り方の総数を求める。
そのために、自分の持参したプレゼントを受け取る人数によって場合分けをする。
1回目の交換で、4人のうち、ちょうど1人が自分の持参したプレゼントを受け取る場合は
$\boxed{サ}$通りあり、ちょうど2人が自分のプレゼントを受け取る場合は$\boxed{シ}$通りある。
このように考えていくと、1回目のプレゼントの受け取り方のうち、1回目の交換で交換会が
終了しない受け取り方の総数は$\boxed{スセ}$である。
したがって、1回目の交換で交換会が終了する確率は$\frac{\boxed{ソ}}{\boxed{タ}}$である。
(3)5人で交換会を開く場合、1回目の交換で交換会が終了する確率は$\frac{\boxed{チツ}}{\boxed{テト}}$である。
\(4)A,B,C,D,Eの5人が交換会を開く。1回目の交換でA,B,C,Dがそれぞれ自分以外
の人の持参したプレゼントを受け取った時、その回で交換会が終了する
条件付き確率は$\frac{\boxed{ナニ}}{\boxed{ヌネ}}$である。
2022共通テスト数学過去問
この動画を見る
第3問\ 複数人がそれぞれプレゼントを一つずつ持ち寄り、交換会を開く。ただし、プレゼントは
全て異なるとする。
プレゼントの交換は次の手順で行う。
手順:外見が同じ袋を人数分用意し、各袋にプレゼントを一つずつ入れたうえで、
各参加者に袋を一つずつでたらめに配る。各参加者は配られた袋の中の
プレゼントを受け取る。
交換の結果、1人でも自分の持参したプレゼントを受け取った場合は、交換をやり直す。
そして、全員が自分以外の人の持参したプレゼントを受け取ったところで交換会を終了する。
(1)2人または3人で交換会を開く場合を考える。
$(\textrm{i})$2人で交換会を開く場合、1回目の交換で交換会が終了するプレゼントの受け取り方は
$\boxed{ア}$通りある。したがって1回目の交換で交換会が終了する確率は$\frac{\boxed{イ}}{\boxed{ウ}}$である。
$(\textrm{ii})$3人で交換会を開く場合、1回目の交換で交換会が終了するプレゼントの受け取り方は
$\boxed{エ}$通りある。したがって1回目の交換で交換会が終了する確率は$\frac{\boxed{オ}}{\boxed{カ}}$である。
$(\textrm{iii})$3人で交換会を開く場合、4回以下の交換で交換会が終了する確率は$\frac{\boxed{キク}}{\boxed{ケコ}}$である。
(2)4人で交換会を開く場合、1回目の交換で交換会が終了する確率を
次の構想に基づいて求めてみよう。
構想:1回目の交換で交換会が終了しないプレゼントの受け取り方の総数を求める。
そのために、自分の持参したプレゼントを受け取る人数によって場合分けをする。
1回目の交換で、4人のうち、ちょうど1人が自分の持参したプレゼントを受け取る場合は
$\boxed{サ}$通りあり、ちょうど2人が自分のプレゼントを受け取る場合は$\boxed{シ}$通りある。
このように考えていくと、1回目のプレゼントの受け取り方のうち、1回目の交換で交換会が
終了しない受け取り方の総数は$\boxed{スセ}$である。
したがって、1回目の交換で交換会が終了する確率は$\frac{\boxed{ソ}}{\boxed{タ}}$である。
(3)5人で交換会を開く場合、1回目の交換で交換会が終了する確率は$\frac{\boxed{チツ}}{\boxed{テト}}$である。
\(4)A,B,C,D,Eの5人が交換会を開く。1回目の交換でA,B,C,Dがそれぞれ自分以外
の人の持参したプレゼントを受け取った時、その回で交換会が終了する
条件付き確率は$\frac{\boxed{ナニ}}{\boxed{ヌネ}}$である。
2022共通テスト数学過去問
福田の共通テスト解答速報〜2022年共通テスト数学IA問題1[3]。三角比と図形の問題。
単元:
#数Ⅰ#大学入試過去問(数学)#図形と計量#三角比への応用(正弦・余弦・面積)#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
第1問\ [3] 外接円の半径が3である$\triangle ABC$を考える。点Aから直線BCへ引いた垂線と直線BC
との交点をDとする。
(1)$AB=5, AC=4$とする。このとき$\sin\angle ABC=\frac{\boxed{ソ}}{\boxed{タ}}, AD=\frac{\boxed{チツ}}{\boxed{テ}}$ である。
(2) 2辺AB,ACの長さの間に$2AB+AC=14$の関係があるとする。
このとき、ABの長さの取り得る値の範囲は$\boxed{ト} \leqq AB \leqq \boxed{ナ}$であり、
$AD=\frac{\boxed{ニヌ}}{\boxed{ネ}}AB^2+\frac{\boxed{ノ}}{\boxed{ハ}}AB$と表せるので、ADの長さの最大値は$\boxed{ヒ}$である。
2022共通テスト数学過去問
この動画を見る
第1問\ [3] 外接円の半径が3である$\triangle ABC$を考える。点Aから直線BCへ引いた垂線と直線BC
との交点をDとする。
(1)$AB=5, AC=4$とする。このとき$\sin\angle ABC=\frac{\boxed{ソ}}{\boxed{タ}}, AD=\frac{\boxed{チツ}}{\boxed{テ}}$ である。
(2) 2辺AB,ACの長さの間に$2AB+AC=14$の関係があるとする。
このとき、ABの長さの取り得る値の範囲は$\boxed{ト} \leqq AB \leqq \boxed{ナ}$であり、
$AD=\frac{\boxed{ニヌ}}{\boxed{ネ}}AB^2+\frac{\boxed{ノ}}{\boxed{ハ}}AB$と表せるので、ADの長さの最大値は$\boxed{ヒ}$である。
2022共通テスト数学過去問
福田の共通テスト解答速報〜2022年共通テスト数学IA問題1[1]。式の値の計算問題。
単元:
#数Ⅰ#大学入試過去問(数学)#数と式#式の計算(整式・展開・因数分解)#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
第1問\ [1] 実数a,b,cが$a+b+c=1\ldots①$および$a^2+b^2+c^2=13\ldots②$を満たしているとする。
(1)$(a+b+c)^2$を展開した式において、①と②を用いると$ab+bc+ca=\boxed{アイ}$
であることが分かる。
よって、$(a-b)^2+(b-c)^2+(c-a)^2=\boxed{ウエ}$である。
(2)$a-b=2\sqrt5$の場合に、$(a-b)(b-c)(c-a)$の値を求めてみよう。
$b-c=x, c-a=y$とおくと、$x+y=\boxed{オカ}\sqrt5$である。また(1)の計算から
$x^2+y^2=\boxed{キク}$が成り立つ。これらより
$(a-b)(b-c)(c-a)=\boxed{ケ}\sqrt5$ である。
2022共通テスト数学過去問
この動画を見る
第1問\ [1] 実数a,b,cが$a+b+c=1\ldots①$および$a^2+b^2+c^2=13\ldots②$を満たしているとする。
(1)$(a+b+c)^2$を展開した式において、①と②を用いると$ab+bc+ca=\boxed{アイ}$
であることが分かる。
よって、$(a-b)^2+(b-c)^2+(c-a)^2=\boxed{ウエ}$である。
(2)$a-b=2\sqrt5$の場合に、$(a-b)(b-c)(c-a)$の値を求めてみよう。
$b-c=x, c-a=y$とおくと、$x+y=\boxed{オカ}\sqrt5$である。また(1)の計算から
$x^2+y^2=\boxed{キク}$が成り立つ。これらより
$(a-b)(b-c)(c-a)=\boxed{ケ}\sqrt5$ である。
2022共通テスト数学過去問
福田の共通テスト直前演習〜2021年共通テスト数学ⅡB問題2(2)。3次関数の問題。
単元:
#数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#微分法と積分法#指数関数#接線と増減表・最大値・最小値#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
${\Large\boxed{2}}$(2)座標平面上で、次の3つの3次関数のグラフについて考える。$y=4x^3+2x^2+3x+5 \ldots④ y=-2x^3+7x^2+3x+5 \ldots⑤$
$y=5x^3-x^2+3x+5 \ldots⑥$
④,⑤,⑥の3次関数のグラフには次の共通点がある。
共通点:・y軸との交点のy座標は$\boxed{ソ}$である。
・y軸との交点における接線の方程式は $y=\boxed{タ}\ x+\boxed{チ}$ である。
$a,b,c,d$を0でない実数とする。
曲線$y=ax^3+bx^2+cx+d$上の点$(0, \boxed{ツ})$における接線の方程式は
$y=\boxed{テ}\ x+\boxed{ト}$ である。
次に$f(x)=ax^3+bx^2+cx+d, g(x)=\boxed{テ}\ x+\boxed{ト}$とし、
$f(x)-g(x)$について考える。
$h(x)=f(x)-g(x)$とおく。a,b,c,dが正の実数であるとき、$y=h(x)$のグラフ
の概形は$\boxed{ナ}$である。
(※$\boxed{ナ}$の解答群は動画参照)
$y=f(x)$のグラフと$y=g(x)$のグラフの共有点のx座標は$\frac{\boxed{ニヌ}}{\boxed{ネ}}$と$\boxed{ノ}$である。
また、xが$\frac{\boxed{ニヌ}}{\boxed{ネ}}$と$\boxed{ノ}$の間を動くとき、
$|f(x)-g(x)|$の値が最大となるのは、$x=\frac{\boxed{ハヒフ}}{\boxed{ヘホ}}$のときである。
2021共通テスト数学過去問
この動画を見る
${\Large\boxed{2}}$(2)座標平面上で、次の3つの3次関数のグラフについて考える。$y=4x^3+2x^2+3x+5 \ldots④ y=-2x^3+7x^2+3x+5 \ldots⑤$
$y=5x^3-x^2+3x+5 \ldots⑥$
④,⑤,⑥の3次関数のグラフには次の共通点がある。
共通点:・y軸との交点のy座標は$\boxed{ソ}$である。
・y軸との交点における接線の方程式は $y=\boxed{タ}\ x+\boxed{チ}$ である。
$a,b,c,d$を0でない実数とする。
曲線$y=ax^3+bx^2+cx+d$上の点$(0, \boxed{ツ})$における接線の方程式は
$y=\boxed{テ}\ x+\boxed{ト}$ である。
次に$f(x)=ax^3+bx^2+cx+d, g(x)=\boxed{テ}\ x+\boxed{ト}$とし、
$f(x)-g(x)$について考える。
$h(x)=f(x)-g(x)$とおく。a,b,c,dが正の実数であるとき、$y=h(x)$のグラフ
の概形は$\boxed{ナ}$である。
(※$\boxed{ナ}$の解答群は動画参照)
$y=f(x)$のグラフと$y=g(x)$のグラフの共有点のx座標は$\frac{\boxed{ニヌ}}{\boxed{ネ}}$と$\boxed{ノ}$である。
また、xが$\frac{\boxed{ニヌ}}{\boxed{ネ}}$と$\boxed{ノ}$の間を動くとき、
$|f(x)-g(x)|$の値が最大となるのは、$x=\frac{\boxed{ハヒフ}}{\boxed{ヘホ}}$のときである。
2021共通テスト数学過去問
福田の共通テスト直前演習〜2021年共通テスト数学IA問題2[2]。データの分析の問題。
単元:
#数Ⅰ#大学入試過去問(数学)#データの分析#データの分析#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
${\Large\boxed{2}}$[2]就業者の従事する産業は第1次産業、第2次産業、第3次産業の三つに分類される。
都道府県別に、就業者数に対する各産業に就業する人数の割合を、
各産業の「就業者数割合」と呼ぶことにする。
(1)図1(※動画参照)は、1975年から2010年まで5年ごとの8個の年度(それ
ぞれを時点という)における都道府県別の三つの産業の就業者
数割合を箱ひげ図で表したものである。各時点の箱ひげ図は、
それぞれ上から第1次産業、第2次産業、第3次産業である。
次の①~⑤のうち、図1から読み取れることとして正しくない
ものは$\boxed{タ}$と$\boxed{チ}$である。
タ、チの解答群
⓪ 第1次産業の就業者数割合の四分位範囲は、2000年までは
後の時点になるにしたがって減少している。
① 第1次産業の就業者数割合について、左側のひげの長さと右側
のひげの長さを比較すると、どの時点においても左側の方が長い。
② 第2次産業の就業者数割合の中央値は、1990年以降、後の時点
になるにしたがって減少している。
③ 第2次産業の就業者数割合の第1四分位数は、後の時点にした
がって減少している。
④ 第3次産業の就業者数割合の第3四分位数は、後の時点にした
がって増加している。
⑤ 第3次産業の就業者数割合の最小値は、後の時点にしたがって増加している。
(2)(1)で取り上げた8時点の中から5時点を取り出して考える。
各時点における都道府県別の、第1次産業と第3次産業の就業
者数割合のヒストグラムを一つのグラフにまとめてかいたもの
が、右の5つのグラフである。それぞれの右側の網掛けした
ヒストグラムが第3次産業のものである。なお、ヒストグラム
の各階級の区間は、左側の数値を含み、右側の数値を含まない。
・1985年度におけるグラフは$\boxed{ツ}$である。
・1995年度におけるグラフは$\boxed{テ}$である。
(※$\boxed{ ツ}, \boxed{テ}$の選択肢は動画参照)
(3) 三つの産業から二つずつを組み合わせて都道府県別の就業者数割合
の散布図を作成した。右の図2の散布
図群は、左から順に1975年度における第1次産業(横軸)と
第2次産業(縦軸)の散布図、第2次産業(横軸)
と第3次産業(縦軸)の散布図、第3次産業(横軸)と第1次産業(縦軸)の散布図である。
また、図3(※動画参照)は同様に作成した2015年度の散布図群である。
下の$ (\textrm{I})(\textrm{II})(\textrm{III})$ は1975年度を基準にしたときの、
2015年度の変化を記述したものである。ただし、ここで
「相関が強くなった」とは、相関係数の絶対値が大きくなったことを意味する。
$(\textrm{I})$ 都道府県別の第1次産業の就業者数割合と第2次産業
の就業者数割合の間の相関は強くなった。
$(\textrm{II})$ 都道府県別の第2次産業の就業者数割合と第3次産業
の就業者数割合の間の相関は強くなった。
$(\textrm{III})$ 都道府県別の第3次産業の就業者数割合と第1次産業
の就業者数割合の間の相関は強くなった。
正誤の組み合わせとして正しいのは$\boxed{ト}$である。
(※$\boxed{ト}$の選択肢は動画参照)
(4) 各都道府県の就業者数割合の内訳として男女別の
就業者数も発表されている。そこで、就業者数に対する
男性・女性の就業者数の割合をそれぞれ「男性の就業者数割合」、
「女性の就業者数割合」と呼ぶことにし、
これらを都道府県別に算出した、下の図4(※動画参照)は、2015年度における
都道府県別の、第1次産業の就業者数割合(横軸)、
男性の就業者数割合(縦軸)の散布図である。
各都道府県の、男性の就業者数と女性の就業者数を
合計すると就業者数の全体になることに注意すると、
2015年度における都道府県別の、第1次産業の就業者数割合(横軸)と、
女性の就業者数割合(縦軸)の 散布図は$\boxed{ナ}$である。
ナについては①~③のうちから 最も適当なものを一つ選べ。
2022共通テスト数学過去問
この動画を見る
${\Large\boxed{2}}$[2]就業者の従事する産業は第1次産業、第2次産業、第3次産業の三つに分類される。
都道府県別に、就業者数に対する各産業に就業する人数の割合を、
各産業の「就業者数割合」と呼ぶことにする。
(1)図1(※動画参照)は、1975年から2010年まで5年ごとの8個の年度(それ
ぞれを時点という)における都道府県別の三つの産業の就業者
数割合を箱ひげ図で表したものである。各時点の箱ひげ図は、
それぞれ上から第1次産業、第2次産業、第3次産業である。
次の①~⑤のうち、図1から読み取れることとして正しくない
ものは$\boxed{タ}$と$\boxed{チ}$である。
タ、チの解答群
⓪ 第1次産業の就業者数割合の四分位範囲は、2000年までは
後の時点になるにしたがって減少している。
① 第1次産業の就業者数割合について、左側のひげの長さと右側
のひげの長さを比較すると、どの時点においても左側の方が長い。
② 第2次産業の就業者数割合の中央値は、1990年以降、後の時点
になるにしたがって減少している。
③ 第2次産業の就業者数割合の第1四分位数は、後の時点にした
がって減少している。
④ 第3次産業の就業者数割合の第3四分位数は、後の時点にした
がって増加している。
⑤ 第3次産業の就業者数割合の最小値は、後の時点にしたがって増加している。
(2)(1)で取り上げた8時点の中から5時点を取り出して考える。
各時点における都道府県別の、第1次産業と第3次産業の就業
者数割合のヒストグラムを一つのグラフにまとめてかいたもの
が、右の5つのグラフである。それぞれの右側の網掛けした
ヒストグラムが第3次産業のものである。なお、ヒストグラム
の各階級の区間は、左側の数値を含み、右側の数値を含まない。
・1985年度におけるグラフは$\boxed{ツ}$である。
・1995年度におけるグラフは$\boxed{テ}$である。
(※$\boxed{ ツ}, \boxed{テ}$の選択肢は動画参照)
(3) 三つの産業から二つずつを組み合わせて都道府県別の就業者数割合
の散布図を作成した。右の図2の散布
図群は、左から順に1975年度における第1次産業(横軸)と
第2次産業(縦軸)の散布図、第2次産業(横軸)
と第3次産業(縦軸)の散布図、第3次産業(横軸)と第1次産業(縦軸)の散布図である。
また、図3(※動画参照)は同様に作成した2015年度の散布図群である。
下の$ (\textrm{I})(\textrm{II})(\textrm{III})$ は1975年度を基準にしたときの、
2015年度の変化を記述したものである。ただし、ここで
「相関が強くなった」とは、相関係数の絶対値が大きくなったことを意味する。
$(\textrm{I})$ 都道府県別の第1次産業の就業者数割合と第2次産業
の就業者数割合の間の相関は強くなった。
$(\textrm{II})$ 都道府県別の第2次産業の就業者数割合と第3次産業
の就業者数割合の間の相関は強くなった。
$(\textrm{III})$ 都道府県別の第3次産業の就業者数割合と第1次産業
の就業者数割合の間の相関は強くなった。
正誤の組み合わせとして正しいのは$\boxed{ト}$である。
(※$\boxed{ト}$の選択肢は動画参照)
(4) 各都道府県の就業者数割合の内訳として男女別の
就業者数も発表されている。そこで、就業者数に対する
男性・女性の就業者数の割合をそれぞれ「男性の就業者数割合」、
「女性の就業者数割合」と呼ぶことにし、
これらを都道府県別に算出した、下の図4(※動画参照)は、2015年度における
都道府県別の、第1次産業の就業者数割合(横軸)、
男性の就業者数割合(縦軸)の散布図である。
各都道府県の、男性の就業者数と女性の就業者数を
合計すると就業者数の全体になることに注意すると、
2015年度における都道府県別の、第1次産業の就業者数割合(横軸)と、
女性の就業者数割合(縦軸)の 散布図は$\boxed{ナ}$である。
ナについては①~③のうちから 最も適当なものを一つ選べ。
2022共通テスト数学過去問
福田の共通テスト直前演習〜2021年共通テスト数学ⅡB問題2(1)。2次関数の問題。
単元:
#数Ⅰ#数Ⅱ#大学入試過去問(数学)#2次関数#微分法と積分法#接線と増減表・最大値・最小値#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
${\Large\boxed{2}}$(1)座標平面上で、次の二つの2次関数のグラフについて考える。
$y=3x^2+2x+3 \ldots① y=2x^2+2x+3 \ldots②$
①、②の2次関数のグラフには次の共通点がある。
共通点:・y軸との交点のy座標は$\boxed{ア}$である。
・y軸との交点における接線の方程式は$y=\boxed{イ}\ x+\boxed{ウ}$である。
次の⓪~⑤の2次関数のグラフのうち、y軸との交点における接線が
$y=\boxed{イ\}\ x+\boxed{ウ}$となるものは
$\boxed{エ}$である。
$\boxed{エ}$の解答群
⓪$y=3x^2-2x-3$ ①$y=-3x^2+2x-3$ ②$y=2x^2+2x-3$
③$y=2x^2-2x+3$ ④$y=-x^2+2x+3$ ⑤$y=-x^2-2x+3$
a,b,cを0でない実数とする。
曲線$y=ax^2+bx+c$上の点$(0,\boxed{オ})$における接線をlとすると、
その方程式は$y=\boxed{カ}\ x+\boxed{キ}$である。
直線lとx軸との交点のx座標は$\frac{\boxed{クケ}}{\boxed{コ}}$である。
a,b,cが正の実数であるとき、曲線$y=ax^2+bx+c$と
直線lおよび直線$x=\frac{\boxed{クケ}}{\boxed{コ}}$で囲まれた図形の
面積を$S$とすると$S=\frac{ac^{\boxed{サ}}}{\boxed{シ}b^{\boxed{ス}}} \ldots③$ である。
③において、$a=1$とし、Sの値が一定となるように正の実数b,cの値を変化させる。
このとき、bとcの関係を表すグラフの概形は$\boxed{セ}$である。
(※$\boxed{セ}$の選択肢は動画参照)
2022共通テスト数学過去問
この動画を見る
${\Large\boxed{2}}$(1)座標平面上で、次の二つの2次関数のグラフについて考える。
$y=3x^2+2x+3 \ldots① y=2x^2+2x+3 \ldots②$
①、②の2次関数のグラフには次の共通点がある。
共通点:・y軸との交点のy座標は$\boxed{ア}$である。
・y軸との交点における接線の方程式は$y=\boxed{イ}\ x+\boxed{ウ}$である。
次の⓪~⑤の2次関数のグラフのうち、y軸との交点における接線が
$y=\boxed{イ\}\ x+\boxed{ウ}$となるものは
$\boxed{エ}$である。
$\boxed{エ}$の解答群
⓪$y=3x^2-2x-3$ ①$y=-3x^2+2x-3$ ②$y=2x^2+2x-3$
③$y=2x^2-2x+3$ ④$y=-x^2+2x+3$ ⑤$y=-x^2-2x+3$
a,b,cを0でない実数とする。
曲線$y=ax^2+bx+c$上の点$(0,\boxed{オ})$における接線をlとすると、
その方程式は$y=\boxed{カ}\ x+\boxed{キ}$である。
直線lとx軸との交点のx座標は$\frac{\boxed{クケ}}{\boxed{コ}}$である。
a,b,cが正の実数であるとき、曲線$y=ax^2+bx+c$と
直線lおよび直線$x=\frac{\boxed{クケ}}{\boxed{コ}}$で囲まれた図形の
面積を$S$とすると$S=\frac{ac^{\boxed{サ}}}{\boxed{シ}b^{\boxed{ス}}} \ldots③$ である。
③において、$a=1$とし、Sの値が一定となるように正の実数b,cの値を変化させる。
このとき、bとcの関係を表すグラフの概形は$\boxed{セ}$である。
(※$\boxed{セ}$の選択肢は動画参照)
2022共通テスト数学過去問
福田の共通テスト直前演習〜2021年共通テスト数学IA問題2[1]。2次関数の問題。
単元:
#数Ⅰ#大学入試過去問(数学)#2次関数#2次関数とグラフ#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
${\Large\boxed{2}}$[1] 陸上競技の短距離100m走では、100mを走るのに
かかる時間(以下、タイムと呼ぶ)は、1歩あたりの
進む距離(以下、ストライドと呼ぶ)と1秒当たりの歩数(以下、ピッチと呼ぶ)に関係がある。
ストライドとピッチはそれぞれ以下の式で与えられる。
ストライド $(m/歩) =\frac{100(m)}{100mを走るのにかかった歩数(歩)}$,
$ピッチ (歩/秒) =\frac{100m を走るのにかかった歩数(歩)}{タイム(秒)}$
ただし、100mを走るのにかかった歩数は、最後の1歩が
ゴールラインをまたぐこともあるので、
少数で 表される。以下、単位は必要のない限り省略する。
例えば、タイムが10.81で、そのときの歩数が48.5であったとき、
ストライドは$\frac{100}{48.5}$より約2.06、ピッチ は
$\frac{ 48.5 }{10.81}$ より約4.49である。
(1)ストライドをx、ピッチをzとおく。ピッチは1秒当たりの歩数、
ストライドは1歩あたりの進む距離
なので、1秒あたりの進む距離すなわち平均速度は、
xとzを用いて$\boxed{ア}(m/秒)$と表される。
これよりタイムと、ストライド、ピッチとの関係は$タイム=\frac{100}{\boxed{ア}}$ と
表されるので$\boxed{ア}$ が最大となるとき
にタイムが最もよくなる。ただし、タイムがよくなるとは、
タイムの値が小さくなることである。
$\boxed{ア}$の解答群
⓪ $x+z$ ①$z-x$ ②$xz$ ③$\frac{x+z}{2}$ ④$\frac{z-x}{2}$ ⑤$\frac{xz}{2}$
(2)太郎さんは、①に着目して、タイムが最もよくなるスライドと
ピッチを考えることにした。右に表は、太郎さんが練習で
100mを3回走った時のストライドとピッチのデータである。
また、ストライドとピッチにはそれぞれ限界がある。太郎さんの場合、
ストライドの最大値は2.40、ピッチの最大値は4.80である。
太郎さんは、上の表から、ストライドが0.05大きくなるとピッチが0.1小さくなるという
関係があると考えてピッチがストライドの1次関数として
表されると仮定した。このとき、ピッチzはストライドxを用いて
$z=\boxed{イウ}\ x+\frac{\boxed{エオ}}{5} \ldots②$ と表される。
②が太郎さんのストライドの最大値2.40とピッチの最大値4.80
まで成り立つと仮定すると、xの値の範囲は
$\boxed{カ}.\boxed{キク} \leqq x \leqq 2.40$
(3)$y=\boxed{ア}$とおく。②を$y=\boxed{ア}$に代入することにより、
yをxの関数としてあらわすことができる。太郎さんのタイムが最もよくなるストライド
とピッチを求めるためには、$\boxed{カ}.\boxed{キク} \leqq x \leqq 2.40$の範囲で
yの値を最大にするxの値を見つければよい。このときyの値が最大になるのは
$x=\boxed{ケ}.\boxed{コサ}$のときである。よって、太郎さんのタイムが最もよくなるのは、
ストライドが$\boxed{ケ}.\boxed{コサ}$のときであり、このとき、ピッチは$\boxed{シ}.\boxed{スセ}$
である。また、このときの太郎さんのタイムは①により$\boxed{ソ}$である。
$\boxed{ソ}$の解答群
⓪9.68 ①9.97 ②10.09 ③10.33 ④10.42 ⑤10.55
2021共通テスト数学過去問
この動画を見る
${\Large\boxed{2}}$[1] 陸上競技の短距離100m走では、100mを走るのに
かかる時間(以下、タイムと呼ぶ)は、1歩あたりの
進む距離(以下、ストライドと呼ぶ)と1秒当たりの歩数(以下、ピッチと呼ぶ)に関係がある。
ストライドとピッチはそれぞれ以下の式で与えられる。
ストライド $(m/歩) =\frac{100(m)}{100mを走るのにかかった歩数(歩)}$,
$ピッチ (歩/秒) =\frac{100m を走るのにかかった歩数(歩)}{タイム(秒)}$
ただし、100mを走るのにかかった歩数は、最後の1歩が
ゴールラインをまたぐこともあるので、
少数で 表される。以下、単位は必要のない限り省略する。
例えば、タイムが10.81で、そのときの歩数が48.5であったとき、
ストライドは$\frac{100}{48.5}$より約2.06、ピッチ は
$\frac{ 48.5 }{10.81}$ より約4.49である。
(1)ストライドをx、ピッチをzとおく。ピッチは1秒当たりの歩数、
ストライドは1歩あたりの進む距離
なので、1秒あたりの進む距離すなわち平均速度は、
xとzを用いて$\boxed{ア}(m/秒)$と表される。
これよりタイムと、ストライド、ピッチとの関係は$タイム=\frac{100}{\boxed{ア}}$ と
表されるので$\boxed{ア}$ が最大となるとき
にタイムが最もよくなる。ただし、タイムがよくなるとは、
タイムの値が小さくなることである。
$\boxed{ア}$の解答群
⓪ $x+z$ ①$z-x$ ②$xz$ ③$\frac{x+z}{2}$ ④$\frac{z-x}{2}$ ⑤$\frac{xz}{2}$
(2)太郎さんは、①に着目して、タイムが最もよくなるスライドと
ピッチを考えることにした。右に表は、太郎さんが練習で
100mを3回走った時のストライドとピッチのデータである。
また、ストライドとピッチにはそれぞれ限界がある。太郎さんの場合、
ストライドの最大値は2.40、ピッチの最大値は4.80である。
太郎さんは、上の表から、ストライドが0.05大きくなるとピッチが0.1小さくなるという
関係があると考えてピッチがストライドの1次関数として
表されると仮定した。このとき、ピッチzはストライドxを用いて
$z=\boxed{イウ}\ x+\frac{\boxed{エオ}}{5} \ldots②$ と表される。
②が太郎さんのストライドの最大値2.40とピッチの最大値4.80
まで成り立つと仮定すると、xの値の範囲は
$\boxed{カ}.\boxed{キク} \leqq x \leqq 2.40$
(3)$y=\boxed{ア}$とおく。②を$y=\boxed{ア}$に代入することにより、
yをxの関数としてあらわすことができる。太郎さんのタイムが最もよくなるストライド
とピッチを求めるためには、$\boxed{カ}.\boxed{キク} \leqq x \leqq 2.40$の範囲で
yの値を最大にするxの値を見つければよい。このときyの値が最大になるのは
$x=\boxed{ケ}.\boxed{コサ}$のときである。よって、太郎さんのタイムが最もよくなるのは、
ストライドが$\boxed{ケ}.\boxed{コサ}$のときであり、このとき、ピッチは$\boxed{シ}.\boxed{スセ}$
である。また、このときの太郎さんのタイムは①により$\boxed{ソ}$である。
$\boxed{ソ}$の解答群
⓪9.68 ①9.97 ②10.09 ③10.33 ④10.42 ⑤10.55
2021共通テスト数学過去問
福田の共通テスト直前演習〜2021年共通テスト数学ⅡB問題1[2]。指数関数の問題。
単元:
#数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#指数関数#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$[2]二つの関数$f(x)=\frac{2^x+2^{-x}}{2}, g(x)=\frac{2^x-2^{-x}}{2}$について考える。
(1)$f(0)=\boxed{セ}, g(0)=\boxed{ソ}$である。また、$f(x)$は
相加平均と相乗平均の関係から、$x=\boxed{タ}$で最小値$\boxed{チ}$をとる。
$g(x)=-2$となるxの値は$\log_2(\sqrt{\boxed{ツ}}-\boxed{テ})$である。
(2)次の①~④は、xにどのような値を代入しても常に成り立つ。
$f(-x)=\boxed{ト} \ldots① g(-x)=\boxed{ナ} \ldots②$
$\left\{f(-x)\right\}^2-\left\{g(-x)\right\}^2=\boxed{ニ} \ldots③$
$g(2x)=\boxed{ヌ}\ f(x)g(x) \ldots④$
$\boxed{ト}、\boxed{ナ}$の解答群
⓪$f(x)$ ①$-f(x)$ ②$g(x)$ ③$-g(x)$
(3)花子:①~④は三角関数の性質に似ているね。
太郎:三角関数の加法定理に類似した式$(\textrm{A})~(\textrm{D})$を考えてみたけど、常に
成り立つ式はあるだろうか。
花子:成り立たない式を見つけるために、式$(\textrm{A})~(\textrm{D})$の$\beta$に
何か具体的な値を代入して調べてみたら?
太郎さんが考えた式
$f(\alpha-\beta)=f(\alpha)g(\beta)+g(\alpha)f(\beta) \ldots(\textrm{A})$
$f(\alpha+\beta)=f(\alpha)g(\beta)+g(\alpha)f(\beta) \ldots(\textrm{B})$
$f(\alpha-\beta)=f(\alpha)g(\beta)+g(\alpha)f(\beta) \ldots(\textrm{C})$
$f(\alpha+\beta)=f(\alpha)g(\beta)-g(\alpha)f(\beta) \ldots(\textrm{D})$
(1),(2)で示されたことのいくつかを利用すると、式$(\textrm{A})~(\textrm{D})$のうち、
$\boxed{ネ}$以外の3つは成り立たないことが分かる。$\boxed{ネ}$は左辺と右辺を
それぞれ計算することによって成り立つことが確かめられる。
$\boxed{ネ}$の解答群
⓪$(\textrm{A})$ ①$(\textrm{B})$ ②$(\textrm{C})$ ③$(\textrm{D})$
2021共通テスト数学過去問
この動画を見る
${\Large\boxed{1}}$[2]二つの関数$f(x)=\frac{2^x+2^{-x}}{2}, g(x)=\frac{2^x-2^{-x}}{2}$について考える。
(1)$f(0)=\boxed{セ}, g(0)=\boxed{ソ}$である。また、$f(x)$は
相加平均と相乗平均の関係から、$x=\boxed{タ}$で最小値$\boxed{チ}$をとる。
$g(x)=-2$となるxの値は$\log_2(\sqrt{\boxed{ツ}}-\boxed{テ})$である。
(2)次の①~④は、xにどのような値を代入しても常に成り立つ。
$f(-x)=\boxed{ト} \ldots① g(-x)=\boxed{ナ} \ldots②$
$\left\{f(-x)\right\}^2-\left\{g(-x)\right\}^2=\boxed{ニ} \ldots③$
$g(2x)=\boxed{ヌ}\ f(x)g(x) \ldots④$
$\boxed{ト}、\boxed{ナ}$の解答群
⓪$f(x)$ ①$-f(x)$ ②$g(x)$ ③$-g(x)$
(3)花子:①~④は三角関数の性質に似ているね。
太郎:三角関数の加法定理に類似した式$(\textrm{A})~(\textrm{D})$を考えてみたけど、常に
成り立つ式はあるだろうか。
花子:成り立たない式を見つけるために、式$(\textrm{A})~(\textrm{D})$の$\beta$に
何か具体的な値を代入して調べてみたら?
太郎さんが考えた式
$f(\alpha-\beta)=f(\alpha)g(\beta)+g(\alpha)f(\beta) \ldots(\textrm{A})$
$f(\alpha+\beta)=f(\alpha)g(\beta)+g(\alpha)f(\beta) \ldots(\textrm{B})$
$f(\alpha-\beta)=f(\alpha)g(\beta)+g(\alpha)f(\beta) \ldots(\textrm{C})$
$f(\alpha+\beta)=f(\alpha)g(\beta)-g(\alpha)f(\beta) \ldots(\textrm{D})$
(1),(2)で示されたことのいくつかを利用すると、式$(\textrm{A})~(\textrm{D})$のうち、
$\boxed{ネ}$以外の3つは成り立たないことが分かる。$\boxed{ネ}$は左辺と右辺を
それぞれ計算することによって成り立つことが確かめられる。
$\boxed{ネ}$の解答群
⓪$(\textrm{A})$ ①$(\textrm{B})$ ②$(\textrm{C})$ ③$(\textrm{D})$
2021共通テスト数学過去問
福田の共通テスト直前演習〜2021年共通テスト数学IA問題1[2]。三角比に関する問題。
単元:
#数Ⅰ#大学入試過去問(数学)#図形と計量#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$[2]右の図のように、$\triangle ABC$の外側に辺AB,BC,CAをそれぞれ1辺とする
正方形ADEB,BFGC,CHIAをかき、2点EとF、GとH、IとDをそれぞれ
線分で結んだ図形を考える。以下において
$BC=a, CA=b, AB=c$
$\angle CAB=A, \angle ABC=B, \angle BCA=C$ とする。
(1)$b=6, c=5, \cos A=\frac{3}{5}$のとき、$\sin A=\frac{\boxed{セ}}{\boxed{ソ}}$であり、
$\triangle ABC$の面積は$\boxed{タチ}$、$\triangle AID$の面積は$\boxed{ツテ}$である。
(2)正方形BFGC,CHIA,ADEBの面積をそれぞれS_1,S_2,S_3とする。
このとき、$S_1-S_2-S_3$ は
・$0° \lt A \lt 90°$のとき$\boxed{ト}$ ・$A=90°$のとき$\boxed{ナ}$
・$90° \lt A \lt 180°$のとき$\boxed{ニ}$
$\boxed{ト}~\boxed{ニ}$の解答群
⓪0である ①正の値である ②負の値である ③正の値も負の値もとる
(3)$\triangle AID,\triangle BEF,\triangle CGH$の面積をそれぞれ$T_1,T_2,T_3$とする。
このとき、$\boxed{ヌ}$である。
$\boxed{ヌ}$の解答群
⓪$a \lt b \lt c$ならば$T_1 \gt T_2 \gt T_3$
①$a \lt b \lt c$ならば$T_1 \lt T_2 \lt T_3$
②Aが鈍角ならば$T_1 \lt T_2$ かつ$T_1 \lt T_3$
③$a,b,c$の値に関係なく、$T_1 = T_2 = T_3$
(4)$\triangle ABC,\triangle AID,\triangle BEF,\triangle CGH$のうち、外接円の半径が最も小さいもの
を求める。$0° \lt A \lt 90°$のとき、$ID \boxed{ネ} BC$であり、
$(\triangle AID$の外接円の半径)$\boxed{ノ}(\triangle ABCの外接円の半径)$
であるから、外接円の半径が最も小さい三角形は
$0° \lt A \lt B \lt C \lt 90°$のとき、$\boxed{ハ}$である。
$0° \lt A \lt B \lt 90° \lt C$のとき、$\boxed{ヒ}$である。
$\boxed{ネ}、\boxed{ノ}$の解答群
⓪$\lt$ ①$=$ ②$\gt$
$\boxed{ハ}、\boxed{ヒ}$の解答群
⓪$\triangle ABC$ ①$\triangle AID$ ②$\triangle BEF$ ③$\triangle CGH$
2021共通テスト数学過去問
この動画を見る
${\Large\boxed{1}}$[2]右の図のように、$\triangle ABC$の外側に辺AB,BC,CAをそれぞれ1辺とする
正方形ADEB,BFGC,CHIAをかき、2点EとF、GとH、IとDをそれぞれ
線分で結んだ図形を考える。以下において
$BC=a, CA=b, AB=c$
$\angle CAB=A, \angle ABC=B, \angle BCA=C$ とする。
(1)$b=6, c=5, \cos A=\frac{3}{5}$のとき、$\sin A=\frac{\boxed{セ}}{\boxed{ソ}}$であり、
$\triangle ABC$の面積は$\boxed{タチ}$、$\triangle AID$の面積は$\boxed{ツテ}$である。
(2)正方形BFGC,CHIA,ADEBの面積をそれぞれS_1,S_2,S_3とする。
このとき、$S_1-S_2-S_3$ は
・$0° \lt A \lt 90°$のとき$\boxed{ト}$ ・$A=90°$のとき$\boxed{ナ}$
・$90° \lt A \lt 180°$のとき$\boxed{ニ}$
$\boxed{ト}~\boxed{ニ}$の解答群
⓪0である ①正の値である ②負の値である ③正の値も負の値もとる
(3)$\triangle AID,\triangle BEF,\triangle CGH$の面積をそれぞれ$T_1,T_2,T_3$とする。
このとき、$\boxed{ヌ}$である。
$\boxed{ヌ}$の解答群
⓪$a \lt b \lt c$ならば$T_1 \gt T_2 \gt T_3$
①$a \lt b \lt c$ならば$T_1 \lt T_2 \lt T_3$
②Aが鈍角ならば$T_1 \lt T_2$ かつ$T_1 \lt T_3$
③$a,b,c$の値に関係なく、$T_1 = T_2 = T_3$
(4)$\triangle ABC,\triangle AID,\triangle BEF,\triangle CGH$のうち、外接円の半径が最も小さいもの
を求める。$0° \lt A \lt 90°$のとき、$ID \boxed{ネ} BC$であり、
$(\triangle AID$の外接円の半径)$\boxed{ノ}(\triangle ABCの外接円の半径)$
であるから、外接円の半径が最も小さい三角形は
$0° \lt A \lt B \lt C \lt 90°$のとき、$\boxed{ハ}$である。
$0° \lt A \lt B \lt 90° \lt C$のとき、$\boxed{ヒ}$である。
$\boxed{ネ}、\boxed{ノ}$の解答群
⓪$\lt$ ①$=$ ②$\gt$
$\boxed{ハ}、\boxed{ヒ}$の解答群
⓪$\triangle ABC$ ①$\triangle AID$ ②$\triangle BEF$ ③$\triangle CGH$
2021共通テスト数学過去問
福田の共通テスト直前演習〜2021年共通テスト数学ⅡB問題1[1]。三角関数の問題。
単元:
#数Ⅱ#大学入試過去問(数学)#三角関数#三角関数とグラフ#加法定理とその応用#センター試験・共通テスト関連#学校別大学入試過去問解説(数学)#共通テスト#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$[1](1)次の問題Aについて考えよう。
問題A 関数$y=\sin\theta+\sqrt3\cos\theta (0 \leqq \theta \leqq \frac{\pi}{2})$の最大値を求めよ。
$\sin\frac{\pi}{\boxed{ア}}=\frac{\sqrt3}{2}, \cos\frac{\pi}{\boxed{ア}}=\frac{1}{2}$ であるから、三角関数の合成により
$y=\boxed{イ}\sin(\theta+\frac{\pi}{\boxed{ア}})$
と変形できる。よって、yは$\theta=\frac{\pi}{\boxed{ウ}}$で最大値$\boxed{エ}$をとる。
(2)pを定数とし、次の問題Bについて考えよう。
問題B 関数$y=\sin\theta+p\cos\theta (0 \leqq \theta \leqq \frac{\pi}{2})$の最大値を求めよ。
$(\textrm{i})p=0$のとき、yは$\theta=\frac{\pi}{\boxed{オ}}$で最大値$\boxed{カ}$をとる。
$(\textrm{ii})p \gt 0$のときは、加法定理$\cos(\theta-\alpha)=\cos\theta\cos\alpha+\sin\theta\sin\alpha$を用いると
$y=\sin\theta+p\cos\theta=\sqrt{\boxed{キ}}\cos(\theta-\alpha)$
と表すことができる。ただし$\alphaは\sin\alpha=\frac{\boxed{ク}}{\sqrt{\boxed{キ}}}, \cos\alpha=\frac{\boxed{ケ}}{\sqrt{\boxed{キ}}}, 0 \lt \alpha \lt \frac{\pi}{2}$
を満たすものとする。このとき、yは$\theta=\boxed{コ}$で最大値$\sqrt{\boxed{サ}}$をとる。
$(\textrm{iii})p \lt 0$のとき、$y$は$\theta=\boxed{シ}$で最大値$\sqrt{\boxed{ス}}$をとる。
$\boxed{キ}~\boxed{ケ}、\boxed{サ}、\boxed{ス}$の解答群
⓪-1 ①1 ②-p ③p \\
④1-p ⑤1+p ⑥-p^2 ⑦p^2 ⑧1-p^2 \\
⑨1+p^2 ⓐ(1-p)^2 ⓑ(1+p^2) \\
$\boxed{コ}、\boxed{シ}$の解答群
⓪$0$ ①$\alpha$ ②$\frac{\pi}{2}$
2021共通テスト数学過去問
この動画を見る
${\Large\boxed{1}}$[1](1)次の問題Aについて考えよう。
問題A 関数$y=\sin\theta+\sqrt3\cos\theta (0 \leqq \theta \leqq \frac{\pi}{2})$の最大値を求めよ。
$\sin\frac{\pi}{\boxed{ア}}=\frac{\sqrt3}{2}, \cos\frac{\pi}{\boxed{ア}}=\frac{1}{2}$ であるから、三角関数の合成により
$y=\boxed{イ}\sin(\theta+\frac{\pi}{\boxed{ア}})$
と変形できる。よって、yは$\theta=\frac{\pi}{\boxed{ウ}}$で最大値$\boxed{エ}$をとる。
(2)pを定数とし、次の問題Bについて考えよう。
問題B 関数$y=\sin\theta+p\cos\theta (0 \leqq \theta \leqq \frac{\pi}{2})$の最大値を求めよ。
$(\textrm{i})p=0$のとき、yは$\theta=\frac{\pi}{\boxed{オ}}$で最大値$\boxed{カ}$をとる。
$(\textrm{ii})p \gt 0$のときは、加法定理$\cos(\theta-\alpha)=\cos\theta\cos\alpha+\sin\theta\sin\alpha$を用いると
$y=\sin\theta+p\cos\theta=\sqrt{\boxed{キ}}\cos(\theta-\alpha)$
と表すことができる。ただし$\alphaは\sin\alpha=\frac{\boxed{ク}}{\sqrt{\boxed{キ}}}, \cos\alpha=\frac{\boxed{ケ}}{\sqrt{\boxed{キ}}}, 0 \lt \alpha \lt \frac{\pi}{2}$
を満たすものとする。このとき、yは$\theta=\boxed{コ}$で最大値$\sqrt{\boxed{サ}}$をとる。
$(\textrm{iii})p \lt 0$のとき、$y$は$\theta=\boxed{シ}$で最大値$\sqrt{\boxed{ス}}$をとる。
$\boxed{キ}~\boxed{ケ}、\boxed{サ}、\boxed{ス}$の解答群
⓪-1 ①1 ②-p ③p \\
④1-p ⑤1+p ⑥-p^2 ⑦p^2 ⑧1-p^2 \\
⑨1+p^2 ⓐ(1-p)^2 ⓑ(1+p^2) \\
$\boxed{コ}、\boxed{シ}$の解答群
⓪$0$ ①$\alpha$ ②$\frac{\pi}{2}$
2021共通テスト数学過去問